|
|
|
|
|
import streamlit as st |
|
import plotly.graph_objects as go |
|
from mT5Model import runModel |
|
|
|
text_1 = """Bilim insanları Botsvana’da Covid-19’un şu ana kadar en çok mutasyona uğramış varyantını tespit etti. \ |
|
Resmi olarak B.1.1.529 koduyla bilinen bu varyantı ise “Nu varyantı” adı verildi. Uzmanlar bu varyant içerisinde \ |
|
tam 32 farklı mutasyon tespit edildiğini açıklarken, bu virüsün corona virüsü aşılarına karşı daha dirençli olabileceğini duyurdu.""" |
|
|
|
text_2 = """Argentina beat Australia 2-1 on Saturday and will take on the Netherlands in the World Cup quarterfinals. \ |
|
It was a historic night for Lionel Messi as the Argentine superstar took to the pitch for his 1,000th match for club and country. \ |
|
He also scored in the match. Messi scored the opening goal in the 35th minute as his low shot in the box beat Australian goalkeeper Mathew Ryan.""" |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def list2text(label_list): |
|
labels = "" |
|
for label in label_list: |
|
labels = labels + label + "," |
|
labels = labels[:-1] |
|
return labels |
|
|
|
label_list_1 = ["dünya", "ekonomi", "kültür", "sağlık", "siyaset", "spor", "teknoloji"] |
|
label_list_2 = ["positive", "negative", "neutral"] |
|
|
|
hypothesis_1 = "Bu yazı {} konusundadır" |
|
hypothesis_2 = "This text is in {} subject" |
|
|
|
st.title("Multilingual Zero-Shot Text Classification with mT5") |
|
|
|
model_name = "alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli" |
|
|
|
st.sidebar.write("For details of used model:") |
|
st.sidebar.write("https://huggingface.co/alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli") |
|
|
|
st.sidebar.write("For Xtreme XNLI Dataset:") |
|
st.sidebar.write("https://www.tensorflow.org/datasets/catalog/xtreme_xnli") |
|
|
|
st.subheader("Select Text, Label List and Hyphothesis") |
|
st.text_area("Text #1", text_1, height=128) |
|
st.text_area("Text #2", text_2, height=128) |
|
st.write(f"Label List #1: {list2text(label_list_1)}") |
|
st.write(f"Label List #2: {list2text(label_list_2)}") |
|
st.write(f"Hypothesis #1: {hypothesis_1}") |
|
st.write(f"Hypothesis #2: {hypothesis_2}") |
|
|
|
text = st.radio("Select Text", ("Text #1", "Text #2", "New Text")) |
|
labels = st.radio("Select Label List", ("Label List #1", "Label List #2", "New Label List")) |
|
hypothesis = st.radio("Select Hypothesis", ("Hypothesis #1", "Hypothesis #2", "New Hypothesis")) |
|
|
|
if text == "Text #1": sequence_to_classify = text_1 |
|
elif text == "Text #2": sequence_to_classify = text_2 |
|
elif text == "New Text": |
|
sequence_to_classify = st.text_area("New Text", value="", height=128) |
|
|
|
if labels == "Label List #1": candidate_labels = label_list_1 |
|
elif labels == "Label List #2": candidate_labels = label_list_2 |
|
elif labels == "New Label List": |
|
candidate_labels = st.text_area("New Label List (Pls Input as comma-separated)", value="", height=16).split(",") |
|
|
|
if hypothesis == "Hypothesis #1": hypothesis_template = hypothesis_1 |
|
elif hypothesis == "Hypothesis #2": hypothesis_template = hypothesis_2 |
|
elif labels == "New Hypothesis": |
|
hypothesis_template = st.text_area("Hypothesis Template for NLI (Pls use similar format of examples)", value="", height=16) |
|
|
|
Run_Button = st.button("Run", key=None) |
|
if Run_Button == True: |
|
with st.spinner('Model is running...'): |
|
output = runModel(model_name, sequence_to_classify, candidate_labels, hypothesis_template) |
|
output_labels = list(output.keys()) |
|
output_scores = list(output.values()) |
|
|
|
st.header("Result") |
|
fig = go.Figure([go.Bar(x=output_labels, y=output_scores)]) |
|
st.plotly_chart(fig, use_container_width=False, sharing="streamlit") |
|
st.success('Done!') |
|
|
|
|