File size: 4,225 Bytes
528df8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import torch
import torch.nn.functional as F
from torch import nn
from . import layers_new
class BaseNet(nn.Module):
def __init__(
self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))
):
super(BaseNet, self).__init__()
self.enc1 = layers_new.Conv2DBNActiv(nin, nout, 3, 1, 1)
self.enc2 = layers_new.Encoder(nout, nout * 2, 3, 2, 1)
self.enc3 = layers_new.Encoder(nout * 2, nout * 4, 3, 2, 1)
self.enc4 = layers_new.Encoder(nout * 4, nout * 6, 3, 2, 1)
self.enc5 = layers_new.Encoder(nout * 6, nout * 8, 3, 2, 1)
self.aspp = layers_new.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
self.dec4 = layers_new.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
self.dec3 = layers_new.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
self.dec2 = layers_new.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
self.lstm_dec2 = layers_new.LSTMModule(nout * 2, nin_lstm, nout_lstm)
self.dec1 = layers_new.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
def __call__(self, x):
e1 = self.enc1(x)
e2 = self.enc2(e1)
e3 = self.enc3(e2)
e4 = self.enc4(e3)
e5 = self.enc5(e4)
h = self.aspp(e5)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
h = self.dec1(h, e1)
return h
class CascadedNet(nn.Module):
def __init__(self, n_fft, nout=32, nout_lstm=128):
super(CascadedNet, self).__init__()
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.nin_lstm = self.max_bin // 2
self.offset = 64
self.stg1_low_band_net = nn.Sequential(
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
layers_new.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0),
)
self.stg1_high_band_net = BaseNet(
2, nout // 4, self.nin_lstm // 2, nout_lstm // 2
)
self.stg2_low_band_net = nn.Sequential(
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
layers_new.Conv2DBNActiv(nout, nout // 2, 1, 1, 0),
)
self.stg2_high_band_net = BaseNet(
nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
)
self.stg3_full_band_net = BaseNet(
3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm
)
self.out = nn.Conv2d(nout, 2, 1, bias=False)
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
def forward(self, x):
x = x[:, :, : self.max_bin]
bandw = x.size()[2] // 2
l1_in = x[:, :, :bandw]
h1_in = x[:, :, bandw:]
l1 = self.stg1_low_band_net(l1_in)
h1 = self.stg1_high_band_net(h1_in)
aux1 = torch.cat([l1, h1], dim=2)
l2_in = torch.cat([l1_in, l1], dim=1)
h2_in = torch.cat([h1_in, h1], dim=1)
l2 = self.stg2_low_band_net(l2_in)
h2 = self.stg2_high_band_net(h2_in)
aux2 = torch.cat([l2, h2], dim=2)
f3_in = torch.cat([x, aux1, aux2], dim=1)
f3 = self.stg3_full_band_net(f3_in)
mask = torch.sigmoid(self.out(f3))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode="replicate",
)
if self.training:
aux = torch.cat([aux1, aux2], dim=1)
aux = torch.sigmoid(self.aux_out(aux))
aux = F.pad(
input=aux,
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
mode="replicate",
)
return mask, aux
else:
return mask
def predict_mask(self, x):
mask = self.forward(x)
if self.offset > 0:
mask = mask[:, :, :, self.offset : -self.offset]
assert mask.size()[3] > 0
return mask
def predict(self, x, aggressiveness=None):
mask = self.forward(x)
pred_mag = x * mask
if self.offset > 0:
pred_mag = pred_mag[:, :, :, self.offset : -self.offset]
assert pred_mag.size()[3] > 0
return pred_mag
|