File size: 5,838 Bytes
528df8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import random

import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm

from . import spec_utils


class VocalRemoverValidationSet(torch.utils.data.Dataset):
    def __init__(self, patch_list):
        self.patch_list = patch_list

    def __len__(self):
        return len(self.patch_list)

    def __getitem__(self, idx):
        path = self.patch_list[idx]
        data = np.load(path)

        X, y = data["X"], data["y"]

        X_mag = np.abs(X)
        y_mag = np.abs(y)

        return X_mag, y_mag


def make_pair(mix_dir, inst_dir):
    input_exts = [".wav", ".m4a", ".mp3", ".mp4", ".flac"]

    X_list = sorted(
        [
            os.path.join(mix_dir, fname)
            for fname in os.listdir(mix_dir)
            if os.path.splitext(fname)[1] in input_exts
        ]
    )
    y_list = sorted(
        [
            os.path.join(inst_dir, fname)
            for fname in os.listdir(inst_dir)
            if os.path.splitext(fname)[1] in input_exts
        ]
    )

    filelist = list(zip(X_list, y_list))

    return filelist


def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
    if split_mode == "random":
        filelist = make_pair(
            os.path.join(dataset_dir, "mixtures"),
            os.path.join(dataset_dir, "instruments"),
        )

        random.shuffle(filelist)

        if len(val_filelist) == 0:
            val_size = int(len(filelist) * val_rate)
            train_filelist = filelist[:-val_size]
            val_filelist = filelist[-val_size:]
        else:
            train_filelist = [
                pair for pair in filelist if list(pair) not in val_filelist
            ]
    elif split_mode == "subdirs":
        if len(val_filelist) != 0:
            raise ValueError(
                "The `val_filelist` option is not available in `subdirs` mode"
            )

        train_filelist = make_pair(
            os.path.join(dataset_dir, "training/mixtures"),
            os.path.join(dataset_dir, "training/instruments"),
        )

        val_filelist = make_pair(
            os.path.join(dataset_dir, "validation/mixtures"),
            os.path.join(dataset_dir, "validation/instruments"),
        )

    return train_filelist, val_filelist


def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
    perm = np.random.permutation(len(X))
    for i, idx in enumerate(tqdm(perm)):
        if np.random.uniform() < reduction_rate:
            y[idx] = spec_utils.reduce_vocal_aggressively(
                X[idx], y[idx], reduction_mask
            )

        if np.random.uniform() < 0.5:
            # swap channel
            X[idx] = X[idx, ::-1]
            y[idx] = y[idx, ::-1]
        if np.random.uniform() < 0.02:
            # mono
            X[idx] = X[idx].mean(axis=0, keepdims=True)
            y[idx] = y[idx].mean(axis=0, keepdims=True)
        if np.random.uniform() < 0.02:
            # inst
            X[idx] = y[idx]

        if np.random.uniform() < mixup_rate and i < len(perm) - 1:
            lam = np.random.beta(mixup_alpha, mixup_alpha)
            X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
            y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]

    return X, y


def make_padding(width, cropsize, offset):
    left = offset
    roi_size = cropsize - left * 2
    if roi_size == 0:
        roi_size = cropsize
    right = roi_size - (width % roi_size) + left

    return left, right, roi_size


def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
    len_dataset = patches * len(filelist)

    X_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
    y_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)

    for i, (X_path, y_path) in enumerate(tqdm(filelist)):
        X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
        coef = np.max([np.abs(X).max(), np.abs(y).max()])
        X, y = X / coef, y / coef

        l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
        X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
        y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")

        starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
        ends = starts + cropsize
        for j in range(patches):
            idx = i * patches + j
            X_dataset[idx] = X_pad[:, :, starts[j] : ends[j]]
            y_dataset[idx] = y_pad[:, :, starts[j] : ends[j]]

    return X_dataset, y_dataset


def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
    patch_list = []
    patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format(
        cropsize, sr, hop_length, n_fft, offset
    )
    os.makedirs(patch_dir, exist_ok=True)

    for i, (X_path, y_path) in enumerate(tqdm(filelist)):
        basename = os.path.splitext(os.path.basename(X_path))[0]

        X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
        coef = np.max([np.abs(X).max(), np.abs(y).max()])
        X, y = X / coef, y / coef

        l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
        X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
        y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")

        len_dataset = int(np.ceil(X.shape[2] / roi_size))
        for j in range(len_dataset):
            outpath = os.path.join(patch_dir, "{}_p{}.npz".format(basename, j))
            start = j * roi_size
            if not os.path.exists(outpath):
                np.savez(
                    outpath,
                    X=X_pad[:, :, start : start + cropsize],
                    y=y_pad[:, :, start : start + cropsize],
                )
            patch_list.append(outpath)

    return VocalRemoverValidationSet(patch_list)