File size: 4,486 Bytes
528df8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import multiprocessing
import os
import sys

from scipy import signal

now_dir = os.getcwd()
sys.path.append(now_dir)
print(sys.argv)
inp_root = sys.argv[1]
sr = int(sys.argv[2])
n_p = int(sys.argv[3])
exp_dir = sys.argv[4]
noparallel = sys.argv[5] == "True"
per = float(sys.argv[6])
import multiprocessing
import os
import traceback

import librosa
import numpy as np
from scipy.io import wavfile

from infer.lib.audio import load_audio
from infer.lib.slicer2 import Slicer

mutex = multiprocessing.Lock()
f = open("%s/preprocess.log" % exp_dir, "a+")


def println(strr):
    mutex.acquire()
    print(strr)
    f.write("%s\n" % strr)
    f.flush()
    mutex.release()


class PreProcess:
    def __init__(self, sr, exp_dir, per=3.7):
        self.slicer = Slicer(
            sr=sr,
            threshold=-42,
            min_length=1500,
            min_interval=400,
            hop_size=15,
            max_sil_kept=500,
        )
        self.sr = sr
        self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
        self.per = per
        self.overlap = 0.3
        self.tail = self.per + self.overlap
        self.max = 0.9
        self.alpha = 0.75
        self.exp_dir = exp_dir
        self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
        self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
        os.makedirs(self.exp_dir, exist_ok=True)
        os.makedirs(self.gt_wavs_dir, exist_ok=True)
        os.makedirs(self.wavs16k_dir, exist_ok=True)

    def norm_write(self, tmp_audio, idx0, idx1):
        tmp_max = np.abs(tmp_audio).max()
        if tmp_max > 2.5:
            print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
            return
        tmp_audio = (tmp_audio / tmp_max * (self.max * self.alpha)) + (
            1 - self.alpha
        ) * tmp_audio
        wavfile.write(
            "%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
            self.sr,
            tmp_audio.astype(np.float32),
        )
        tmp_audio = librosa.resample(
            tmp_audio, orig_sr=self.sr, target_sr=16000
        )  # , res_type="soxr_vhq"
        wavfile.write(
            "%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
            16000,
            tmp_audio.astype(np.float32),
        )

    def pipeline(self, path, idx0):
        try:
            audio = load_audio(path, self.sr)
            # zero phased digital filter cause pre-ringing noise...
            # audio = signal.filtfilt(self.bh, self.ah, audio)
            audio = signal.lfilter(self.bh, self.ah, audio)

            idx1 = 0
            for audio in self.slicer.slice(audio):
                i = 0
                while 1:
                    start = int(self.sr * (self.per - self.overlap) * i)
                    i += 1
                    if len(audio[start:]) > self.tail * self.sr:
                        tmp_audio = audio[start : start + int(self.per * self.sr)]
                        self.norm_write(tmp_audio, idx0, idx1)
                        idx1 += 1
                    else:
                        tmp_audio = audio[start:]
                        idx1 += 1
                        break
                self.norm_write(tmp_audio, idx0, idx1)
            println("%s->Suc." % path)
        except:
            println("%s->%s" % (path, traceback.format_exc()))

    def pipeline_mp(self, infos):
        for path, idx0 in infos:
            self.pipeline(path, idx0)

    def pipeline_mp_inp_dir(self, inp_root, n_p):
        try:
            infos = [
                ("%s/%s" % (inp_root, name), idx)
                for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
            ]
            if noparallel:
                for i in range(n_p):
                    self.pipeline_mp(infos[i::n_p])
            else:
                ps = []
                for i in range(n_p):
                    p = multiprocessing.Process(
                        target=self.pipeline_mp, args=(infos[i::n_p],)
                    )
                    ps.append(p)
                    p.start()
                for i in range(n_p):
                    ps[i].join()
        except:
            println("Fail. %s" % traceback.format_exc())


def preprocess_trainset(inp_root, sr, n_p, exp_dir, per):
    pp = PreProcess(sr, exp_dir, per)
    println("start preprocess")
    println(sys.argv)
    pp.pipeline_mp_inp_dir(inp_root, n_p)
    println("end preprocess")


if __name__ == "__main__":
    preprocess_trainset(inp_root, sr, n_p, exp_dir, per)