Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,122 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import streamlit as st
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
else:
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
else:
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
st.
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
from groq import Groq
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from docx import Document
|
9 |
+
from PyPDF2 import PdfReader
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
# Initialize Groq client
|
13 |
+
client = Groq(
|
14 |
+
api_key=os.environ.get("GROQ_API_KEY"),
|
15 |
+
)
|
16 |
+
|
17 |
+
# Initialize HuggingFace summarization pipeline
|
18 |
+
summarizer = pipeline("summarization")
|
19 |
+
|
20 |
+
# Function to get Groq analysis of the job description
|
21 |
+
def groq_chat_completion(prompt):
|
22 |
+
chat_completion = client.chat.completions.create(
|
23 |
+
messages=[
|
24 |
+
{
|
25 |
+
"role": "user",
|
26 |
+
"content": prompt,
|
27 |
+
}
|
28 |
+
],
|
29 |
+
model="llama3-8b-8192",
|
30 |
+
)
|
31 |
+
return chat_completion.choices[0].message.content
|
32 |
+
|
33 |
+
# Function to extract text from uploaded files
|
34 |
+
def extract_text(file):
|
35 |
+
if file.type == "text/plain":
|
36 |
+
return file.read().decode("utf-8")
|
37 |
+
elif file.type == "application/pdf":
|
38 |
+
pdf_reader = PdfReader(file)
|
39 |
+
text = ""
|
40 |
+
for page in pdf_reader.pages:
|
41 |
+
text += page.extract_text() or ""
|
42 |
+
return text
|
43 |
+
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
44 |
+
doc = Document(file)
|
45 |
+
text = ""
|
46 |
+
for para in doc.paragraphs:
|
47 |
+
text += para.text + "\n"
|
48 |
+
return text
|
49 |
else:
|
50 |
+
return ""
|
51 |
+
|
52 |
+
# Function to extract keywords and calculate similarity
|
53 |
+
def extract_keywords(documents):
|
54 |
+
vectorizer = TfidfVectorizer(stop_words="english")
|
55 |
+
tfidf_matrix = vectorizer.fit_transform(documents)
|
56 |
+
return vectorizer, tfidf_matrix
|
57 |
+
|
58 |
+
def calculate_similarity(tfidf_matrix):
|
59 |
+
similarity_matrix = cosine_similarity(tfidf_matrix)
|
60 |
+
return similarity_matrix
|
61 |
|
62 |
+
# Function to generate summary for each resume
|
63 |
+
def generate_summary(text):
|
64 |
+
if len(text.split()) > 200: # Summarize only if the text is long enough
|
65 |
+
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)
|
66 |
+
return summary[0]['summary_text']
|
67 |
+
return text # Return original text if it's short
|
68 |
+
|
69 |
+
# Streamlit UI
|
70 |
+
st.title("Detail Job Creator and Resume Scanner")
|
71 |
+
st.write("Analyze resumes and match them with job descriptions.")
|
72 |
+
|
73 |
+
# Upload job description and display Groq analysis first
|
74 |
+
st.subheader("Job Description")
|
75 |
+
job_description = st.text_area(
|
76 |
+
"Paste the job description here:",
|
77 |
+
height=150,
|
78 |
+
)
|
79 |
+
|
80 |
+
if job_description:
|
81 |
+
st.subheader("Groq Analysis")
|
82 |
+
groq_response = groq_chat_completion(job_description)
|
83 |
+
st.write("Groq's analysis of the job description:")
|
84 |
+
st.write(groq_response)
|
85 |
+
|
86 |
+
# Proceed with resume upload only if job description is provided
|
87 |
+
st.subheader("Upload Resumes")
|
88 |
+
uploaded_files = st.file_uploader(
|
89 |
+
"Upload resume files (Text, Word, or PDF):",
|
90 |
+
accept_multiple_files=True,
|
91 |
+
type=["txt", "docx", "pdf"]
|
92 |
+
)
|
93 |
+
|
94 |
+
if st.button("Analyze Resumes"):
|
95 |
+
if not uploaded_files:
|
96 |
+
st.error("Please upload at least one resume.")
|
97 |
else:
|
98 |
+
# Extract text from resumes
|
99 |
+
resumes = [extract_text(file) for file in uploaded_files]
|
100 |
+
resumes = [resume for resume in resumes if resume.strip()] # Filter out empty files
|
101 |
+
|
102 |
+
if not resumes:
|
103 |
+
st.error("No valid text extracted from resumes. Please check your files.")
|
104 |
+
else:
|
105 |
+
# Combine job description and resumes for analysis
|
106 |
+
documents = [job_description] + resumes
|
107 |
+
|
108 |
+
# Extract keywords and calculate similarity
|
109 |
+
vectorizer, tfidf_matrix = extract_keywords(documents)
|
110 |
+
similarities = calculate_similarity(tfidf_matrix)
|
111 |
+
|
112 |
+
# Display match scores and summaries
|
113 |
+
st.subheader("Resume Match Scores and Summaries")
|
114 |
+
for i, file in enumerate(uploaded_files):
|
115 |
+
st.write(f"**Resume {i+1}: {file.name}**")
|
116 |
+
st.write(f"Match Score: {similarities[0][i + 1] * 100:.2f}%")
|
117 |
+
|
118 |
+
# Generate and display summary
|
119 |
+
summary = generate_summary(resumes[i])
|
120 |
+
st.write("**Summary:**")
|
121 |
+
st.write(summary)
|
122 |
+
st.write("---")
|