Spaces:
Running
Running
from transformers import pipeline | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
# Load the Hugging Face depth estimation pipelines | |
pipe_base = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf") | |
pipe_small = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") | |
pipe_intel = pipeline(task="depth-estimation", model="Intel/dpt-swinv2-tiny-256") | |
pipe_beit = pipeline(task="depth-estimation", model="Intel/dpt-beit-base-384") | |
def process_and_display(pipe, output_component): | |
def process_image(image): | |
depth_map = pipe(image)["depth"] | |
normalized_depth = normalize_depth(depth_map) | |
output_component.value = normalized_depth | |
return process_image | |
def normalize_depth(depth_map): | |
# Normalize depth map values to range [0, 255] for visualization | |
normalized_depth = ((depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())) * 255 | |
return normalized_depth.astype(np.uint8) | |
# Create Gradio output components for each pipeline | |
output_base = gr.outputs.Image(type="numpy", label="LiheYoung/depth-anything-base-hf") | |
output_small = gr.outputs.Image(type="numpy", label="LiheYoung/depth-anything-small-hf") | |
output_intel = gr.outputs.Image(type="numpy", label="Intel/dpt-swinv2-tiny-256") | |
output_beit = gr.outputs.Image(type="numpy", label="Intel/dpt-beit-base-384") | |
# Create Gradio interfaces for each pipeline | |
iface_base = gr.Interface(process_and_display(pipe_base, output_base), inputs=gr.inputs.Image(type="pil"), outputs=output_base, title="Depth Estimation - LiheYoung/depth-anything-base-hf") | |
iface_small = gr.Interface(process_and_display(pipe_small, output_small), inputs=gr.inputs.Image(type="pil"), outputs=output_small, title="Depth Estimation - LiheYoung/depth-anything-small-hf") | |
iface_intel = gr.Interface(process_and_display(pipe_intel, output_intel), inputs=gr.inputs.Image(type="pil"), outputs=output_intel, title="Depth Estimation - Intel/dpt-swinv2-tiny-256") | |
iface_beit = gr.Interface(process_and_display(pipe_beit, output_beit), inputs=gr.inputs.Image(type="pil"), outputs=output_beit, title="Depth Estimation - Intel/dpt-beit-base-384") | |
# Launch the Gradio interfaces | |
iface_base.launch() | |
iface_small.launch() | |
iface_intel.launch() | |
iface_beit.launch() | |
""" | |
from transformers import pipeline | |
from PIL import Image | |
import requests | |
# load pipe | |
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") | |
# load image | |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
image = Image.open(requests.get(url, stream=True).raw) | |
# inference | |
depth = pipe(image)["depth"] | |
""" |