File size: 5,821 Bytes
5653716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875d37f
 
5653716
 
 
 
 
 
 
 
 
 
 
 
 
875d37f
5653716
 
875d37f
 
 
 
 
 
 
 
 
 
 
 
5653716
 
 
875d37f
5653716
875d37f
 
 
 
 
e75b8ce
875d37f
 
 
 
 
 
 
 
5653716
 
875d37f
5653716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875d37f
 
 
 
 
 
 
5653716
875d37f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5653716
 
875d37f
5653716
875d37f
5653716
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import torch
import json
import gc
import time
from unsloth import FastLanguageModel
from transformers import TextIteratorStreamer
from threading import Thread

os.environ["TOKENIZERS_PARALLELISM"] = "false"

tokenizer = None
model = None
default_cfg = {
    'model_name': "unsloth/gemma-2-9b-it-bnb-4bit",
    'dtype': None,
    'instruction': None,
    'inst_template': None,
    'chat_template': None,
    'max_length': 2400,
    'max_seq_length': 2048,
    'max_new_tokens': 512,
    'temperature': 0.9,
    'top_p': 0.95,
    'top_k': 40,
    'repetition_penalty': 1.2,
}
cfg = default_cfg.copy()

def load_model(model_name, dtype):
    global tokenizer, model, cfg

    if cfg['model_name'] == model_name and cfg['dtype'] == dtype:
        return

    del model
    del tokenizer
    model = None
    tokenizer = None
    gc.collect()
    torch.cuda.empty_cache()

    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name,
        max_seq_length = cfg['max_seq_length'],
        dtype = torch.bfloat16,
        load_in_8bit = (dtype == '8bit'),
        load_in_4bit = (dtype == '4bit'),
    )

    FastLanguageModel.for_inference(model)

    cfg['model_name'] = model_name
    cfg['dtype'] = dtype

def clear_config():
    global cfg
    cfg = default_cfg.copy()

def set_config(model_name, dtype, instruction, inst_template, chat_template, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
    global cfg
    load_model(model_name, dtype)
    cfg.update({
        'instruction': instruction,
        'inst_template': inst_template,
        'chat_template': chat_template,
        'max_new_tokens': int(max_new_tokens),
        'temperature': float(temperature),
        'top_p': float(top_p),
        'top_k': int(top_k),
        'repetition_penalty': float(repetition_penalty),
    })
    return 'done.'

def set_config_args(args):
    global cfg

    load_model(args['model_name'], args['dtype'])
    cfg.update(args)

    return 'done.'

def chatinterface_to_messages(message, history):
    global cfg

    messages = []
    
    if cfg['instruction']:
        messages.append({'role': 'user', 'content': cfg['instruction']})
        messages.append({'role': 'assistant', 'content': 'I understand.'})

    for pair in history:
        [user, assistant] = pair
        if user:
            messages.append({'role': 'user', 'content': user})
        if assistant:
            messages.append({'role': 'assistant', 'content': assistant})

    if message:
        messages.append({'role': 'user', 'content': message})

    return messages

def apply_template(message, history, args):
    global tokenizer, cfg

    if 'input' in args:
        message = args['input']
    if 'instruction' in args:
        cfg['instruction'] = args['instruction']

    if 'messages' in args:
        messages = args['messages']
    elif history:
        messages = chatinterface_to_messages(message, history)
    else:
        messages = {}

    if cfg['chat_template']:
        tokenizer.chat_template = cfg['chat_template']

    if message:
        if cfg['inst_template']:
            return cfg['inst_template'].format(instruction=cfg['instruction'], input=message)
        if cfg['instruction']:
            messages = [
                {'role': 'user', 'content': cfg['instruction']},
                {'role': 'assistant', 'content': 'I understand.'},
                {'role': 'user', 'content': message},
            ]
        else:
            messages = [
                {'role': 'user', 'content': message},
            ]
    return tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)

def chat(message = None, history = [], args = {}):
    global tokenizer, model, cfg

    prompt = apply_template(message, history, args)

    inputs = tokenizer(prompt, return_tensors="pt",
        padding=True, max_length=cfg['max_length'], truncation=True).to("cuda")

    streamer = TextIteratorStreamer(
        tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True,
    )

    generate_kwargs = dict(
        inputs,
        do_sample=True,
        streamer=streamer,
        num_beams=1,
    )

    for k in [
        'max_new_tokens',
        'temperature',
        'top_p',
        'top_k',
        'repetition_penalty'
        ]:
        if cfg[k]:
            generate_kwargs[k] = cfg[k]

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    model_output = ""
    for new_text in streamer:
        model_output += new_text
        if 'fastapi' in args:
            # fastapiは差分だけを返して欲しい
            yield new_text
        else:
            # gradioは常に全文を返して欲しい
            yield model_output

def infer(message = None, history = [], args = {}):
    global tokenizer, model, cfg

    prompt = apply_template(message, history, args)

    inputs = tokenizer(prompt, return_tensors="pt",
        padding=True, max_length=cfg['max_length'], truncation=True).to("cuda")

    generate_kwargs = dict(
        inputs,
        do_sample=True,
        num_beams=1,
        use_cache=True,
    )

    for k in [
        'max_new_tokens',
        'temperature',
        'top_p',
        'top_k',
        'repetition_penalty'
        ]:
        if cfg[k]:
            generate_kwargs[k] = cfg[k]

    output_ids = model.generate(**generate_kwargs)
    return tokenizer.decode(output_ids.tolist()[0][inputs['input_ids'].size(1):], skip_special_tokens=True)

def numel(message = None, history = [], args = {}):
    global tokenizer, model, cfg

    prompt = apply_template(message, history, args)

    model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    return torch.numel(model_inputs['input_ids'])

load_model(cfg['model_name'], '4bit')