File size: 11,582 Bytes
263997c 9923cde 263997c 9923cde 9380b17 263997c 5ec76ac 263997c 5ec76ac 263997c 5ec76ac 263997c 9923cde 5ec76ac 9923cde 5ec76ac 263997c 5ec76ac 263997c 9923cde 263997c 9923cde 5ec76ac 263997c 9923cde 5ec76ac 9923cde 263997c 9923cde bd88854 5ec76ac 263997c 5ec76ac 263997c 9923cde 263997c 5ec76ac 263997c 5ec76ac 263997c 5ec76ac 263997c 5ec76ac 263997c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# import os
# import streamlit as st
# import google.generativeai as genai
# from langchain_google_genai import GoogleGenerativeAIEmbeddings
# from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain_community.document_loaders import PyPDFLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
# from langchain_core.messages import HumanMessage, SystemMessage
# from langchain.chains import create_history_aware_retriever, create_retrieval_chain
# from langchain.chains.combine_documents import create_stuff_documents_chain
# from dotenv import load_dotenv
# from langchain.embeddings import HuggingFaceEmbeddings
# from sentence_transformers import SentenceTransformer
# import pysqlite3
# import sys
# sys.modules['sqlite3'] = pysqlite3
# import os
# # Retrieve Google API key
# GOOGLE_API_KEY = str(os.getenv('GOOGLE_API_KEY'))
# HF_TOKEN = str(os.getenv("HF_TOKEN"))
# if not GOOGLE_API_KEY:
# raise ValueError("Gemini API key not found. Please set it in the .env file.")
# os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
# os.environ["HF_TOKEN"] = HF_TOKEN
# # Streamlit app configuration
# st.set_page_config(page_title="English Chatbot", layout="centered")
# st.title("English Tutor Bot")
# # Initialize Google Generative AI LLM
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-pro-latest",
# temperature=0.2,
# max_tokens=500,
# timeout=None,
# max_retries=2,
# )
# # Initialize embeddings using HuggingFace
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
# def load_preprocessed_vectorstore():
# try:
# loader = PyPDFLoader("sound.pdf")
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(
# separators=["\n\n", "\n", ". ", " ", ""],
# chunk_size=500,
# chunk_overlap=150
# )
# document_chunks = text_splitter.split_documents(documents)
# vector_store = Chroma.from_documents(
# embedding=embeddings,
# documents=document_chunks,
# persist_directory="./data32"
# )
# return vector_store
# except Exception as e:
# st.error(f"Error creating vector store: {e}")
# return None
# def get_context_retriever_chain(vector_store):
# retriever = vector_store.as_retriever()
# prompt = ChatPromptTemplate.from_messages([
# MessagesPlaceholder(variable_name="chat_history"),
# ("human", "{input}"),
# ("system", """You are an expert english tutor, your task is to help users to learn english. Given the chat history and the latest user question, which might reference context in the chat history, Answer the question
# by taking reference from the document.
# If the question is directly addressed within the provided document, provide a relevant answer.
# If the question is not explicitly addressed in the document, return the following message:
# 'This question is beyond the scope of the available information. Please contact your mentor for further assistance.'
# Do NOT answer the question directly, just reformulate it if needed and otherwise return it as is.""")
# ])
# retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
# return retriever_chain
# def get_conversational_chain(retriever_chain):
# prompt = ChatPromptTemplate.from_messages([
# ("system", """Hello! I'm your English Tutor, I am here to help you with learning english and can also take quiz to test your skills.
# Note: I will only provide information that is available within our database to ensure accuracy. Let's get started!
# """
# "\n\n"
# "{context}"),
# MessagesPlaceholder(variable_name="chat_history"),
# ("human", "{input}")
# ])
# stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
# return create_retrieval_chain(retriever_chain, stuff_documents_chain)
# def get_response(user_query):
# retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
# conversation_rag_chain = get_conversational_chain(retriever_chain)
# formatted_chat_history = []
# for message in st.session_state.chat_history:
# if isinstance(message, HumanMessage):
# formatted_chat_history.append({"author": "user", "content": message.content})
# elif isinstance(message, SystemMessage):
# formatted_chat_history.append({"author": "assistant", "content": message.content})
# response = conversation_rag_chain.invoke({
# "chat_history": formatted_chat_history,
# "input": user_query
# })
# return response['answer']
# # Load the preprocessed vector store from the local directory
# st.session_state.vector_store = load_preprocessed_vectorstore()
# # Initialize chat history if not present
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = [
# {"author": "assistant", "content": "Hello, I am a English Tutor Bot. How can I help you?"}
# ]
# # Main app logic
# if st.session_state.get("vector_store") is None:
# st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.")
# else:
# # Display chat history
# with st.container():
# for message in st.session_state.chat_history:
# if message["author"] == "assistant":
# with st.chat_message("system"):
# st.write(message["content"])
# elif message["author"] == "user":
# with st.chat_message("human"):
# st.write(message["content"])
# # Add user input box below the chat
# with st.container():
# with st.form(key="chat_form", clear_on_submit=True):
# user_query = st.text_input("Type your message here...", key="user_input")
# submit_button = st.form_submit_button("Send")
# if submit_button and user_query:
# # Get bot response
# response = get_response(user_query)
# st.session_state.chat_history.append({"author": "user", "content": user_query})
# st.session_state.chat_history.append({"author": "assistant", "content": response})
# # Rerun the app to refresh the chat display
# st.rerun()
import os
import logging
import pathlib
from telegram import Update
from telegram.ext import Updater, CommandHandler, MessageHandler, CallbackContext, Filters
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain, create_retrieval_chain
from langchain_google_genai import GoogleGenerativeAI
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_community.document_loaders import Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
# Enable logging
logging.basicConfig(
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO
)
logger = logging.getLogger(__name__)
GOOGLE_API_KEY = "AIzaSyAytkzRS0Xp0pCyo6WqKJ4m1o330bF-gPk"
OPENAI_API_KEY = "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"
TOKEN = '8126949340:AAGmr4ByOLlYXtEQuleOsinS2w_wUogldj0'
# Set up OpenAI API key
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
# Initialize embeddings using HuggingFace
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def load_preprocessed_vectorstore():
"""Load documents and create a vector store."""
try:
loader = Docx2txtLoader("./Pre.docx")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", ". ", " ", ""],
chunk_size=3000,
chunk_overlap=1000)
document_chunks = text_splitter.split_documents(documents)
vector_store = Chroma.from_documents(
embedding=embeddings,
documents=document_chunks,
persist_directory="./data"
)
return vector_store
except Exception as e:
logger.error(f"Error creating vector store: {e}")
return None
# Initialize the vector store
vector_store = load_preprocessed_vectorstore()
# Define the Langchain chain with a retrieval mechanism
def get_response(user_message, context):
retriever_chain = vector_store.as_retriever()
prompt_template = PromptTemplate(input_variables=["chat_history", "input"], template="{chat_history}\nUser: {input}\nAssistant:")
conversation_chain = create_retrieval_chain(retriever_chain, prompt_template)
formatted_chat_history = []
if 'chat_history' in context.user_data:
formatted_chat_history.extend(context.user_data['chat_history'])
response = conversation_chain.invoke({
"chat_history": formatted_chat_history,
"input": user_message
})
# Update chat history in user data
context.user_data['chat_history'] = formatted_chat_history + [{"author": "user", "content": user_message}, {"author": "assistant", "content": response['answer']}]
return response['answer']
# Start the bot
def start(update: Update, context: CallbackContext) -> None:
"""Send a message when the command /start is issued."""
user = update.effective_user
update.message.reply_text(f'Hi {user.first_name}! I\'m a bot powered by OpenAI. Ask me anything.')
# Help command
def help_command(update: Update, context: CallbackContext) -> None:
"""Send a message when the command /help is issued."""
update.message.reply_text('Ask me any question, and I\'ll try to answer using my knowledge!')
# Handle messages
def handle_message(update: Update, context: CallbackContext) -> None:
"""Handle user messages and generate responses using Langchain."""
user_message = update.message.text
try:
# Generate a response using Langchain and OpenAI
response = get_response(user_message, context)
update.message.reply_text(response)
except Exception as e:
update.message.reply_text("Sorry, I couldn't process your request at the moment.")
logger.error(f"Error: {e}")
# Error handler
def error_handler(update: Update, context: CallbackContext) -> None:
"""Log Errors caused by Updates."""
logger.warning(f'Update "{update}" caused error "{context.error}"')
def main() -> None:
"""Start the bot."""
updater = Updater(TOKEN)
# Get the dispatcher to register handlers
dispatcher = updater.dispatcher
# On different commands - answer in Telegram
dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
# On non-command i.e. message - handle the message
dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, handle_message))
# Log all errors
dispatcher.add_error_handler(error_handler)
# Start the Bot
updater.start_polling()
# Run the bot until you press Ctrl-C or the process receives SIGINT, SIGTERM, or SIGABRT
updater.idle()
if __name__ == '__main__':
main()
|