aje6 commited on
Commit
1c5def5
·
verified ·
1 Parent(s): 3cdc0ff

Delete inference.py

Browse files
Files changed (1) hide show
  1. inference.py +0 -146
inference.py DELETED
@@ -1,146 +0,0 @@
1
- import time
2
- import cv2
3
- import numpy as np
4
- import onnxruntime
5
-
6
- from utils import draw_detections
7
-
8
-
9
- class YOLOv8:
10
- def __init__(self, path):
11
-
12
- # Initialize model
13
- self.initialize_model(path)
14
-
15
- def __call__(self, image):
16
- return self.detect_objects(image)
17
-
18
- def initialize_model(self, path):
19
- self.session = onnxruntime.InferenceSession(
20
- path, providers=onnxruntime.get_available_providers()
21
- )
22
- # Get model info
23
- self.get_input_details()
24
- self.get_output_details()
25
-
26
- def detect_objects(self, image, conf_threshold=0.3):
27
- input_tensor = self.prepare_input(image)
28
-
29
- # Perform inference on the image
30
- new_image = self.inference(image, input_tensor, conf_threshold)
31
-
32
- return new_image
33
-
34
- def prepare_input(self, image):
35
- self.img_height, self.img_width = image.shape[:2]
36
-
37
- input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
38
-
39
- # Resize input image
40
- input_img = cv2.resize(input_img, (self.input_width, self.input_height))
41
-
42
- # Scale input pixel values to 0 to 1
43
- input_img = input_img / 255.0
44
- input_img = input_img.transpose(2, 0, 1)
45
- input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
46
-
47
- return input_tensor
48
-
49
- def inference(self, image, input_tensor, conf_threshold=0.3):
50
- start = time.perf_counter()
51
- outputs = self.session.run(
52
- self.output_names, {self.input_names[0]: input_tensor}
53
- )
54
-
55
- print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
56
- boxes, scores, class_ids, = self.process_output(outputs, conf_threshold)
57
- return self.draw_detections(image, boxes, scores, class_ids)
58
-
59
- def process_output(self, output, conf_threshold=0.3):
60
- predictions = np.squeeze(output[0])
61
-
62
- # Filter out object confidence scores below threshold
63
- scores = predictions[:, 4]
64
- predictions = predictions[scores > conf_threshold, :]
65
- scores = scores[scores > conf_threshold]
66
-
67
- if len(scores) == 0:
68
- return [], [], []
69
-
70
- # Get the class with the highest confidence
71
- class_ids = predictions[:, 5].astype(int)
72
-
73
- # Get bounding boxes for each object
74
- boxes = self.extract_boxes(predictions)
75
-
76
- return boxes, scores, class_ids
77
-
78
- def extract_boxes(self, predictions):
79
- # Extract boxes from predictions
80
- boxes = predictions[:, :4]
81
-
82
- # Scale boxes to original image dimensions
83
- boxes = self.rescale_boxes(boxes)
84
-
85
- # Convert boxes to xyxy format
86
- #boxes = xywh2xyxy(boxes)
87
-
88
- return boxes
89
-
90
- def rescale_boxes(self, boxes):
91
- # Rescale boxes to original image dimensions
92
- input_shape = np.array(
93
- [self.input_width, self.input_height, self.input_width, self.input_height]
94
- )
95
- boxes = np.divide(boxes, input_shape, dtype=np.float32)
96
- boxes *= np.array(
97
- [self.img_width, self.img_height, self.img_width, self.img_height]
98
- )
99
- return boxes
100
-
101
- def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4):
102
- return draw_detections(
103
- image, boxes, scores, class_ids, mask_alpha
104
- )
105
-
106
- def get_input_details(self):
107
- model_inputs = self.session.get_inputs()
108
- self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
109
-
110
- self.input_shape = model_inputs[0].shape
111
- self.input_height = self.input_shape[2]
112
- self.input_width = self.input_shape[3]
113
-
114
- def get_output_details(self):
115
- model_outputs = self.session.get_outputs()
116
- self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
117
-
118
-
119
- if __name__ == "__main__":
120
- import requests
121
- import tempfile
122
- from huggingface_hub import hf_hub_download
123
-
124
- model_file = hf_hub_download(
125
- repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
126
- )
127
-
128
- yolov8_detector = YOLOv10(model_file)
129
-
130
- with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
131
- f.write(
132
- requests.get(
133
- "https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
134
- ).content
135
- )
136
- f.seek(0)
137
- img = cv2.imread(f.name)
138
-
139
- # # Detect Objects
140
- combined_image = yolov8_detector.detect_objects(img)
141
-
142
-
143
- # Draw detections
144
- cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
145
- cv2.imshow("Output", combined_image)
146
- cv2.waitKey(0)