Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import cv2 | |
# import numpy as np | |
# import onnxruntime as ort | |
# # Load the ONNX model using onnxruntime | |
# onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path | |
# session = ort.InferenceSession(onnx_model_path) | |
# # Function to perform object detection with the ONNX model | |
# def detect_objects(frame, confidence_threshold=0.5): | |
# # Convert the frame from BGR (OpenCV) to RGB | |
# image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# # Preprocessing: Resize and normalize the image | |
# # Assuming YOLO model input is 640x640, update according to your model's input size | |
# input_size = (640, 640) | |
# image_resized = cv2.resize(image, input_size) | |
# image_normalized = image_resized / 255.0 # Normalize to [0, 1] | |
# image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format | |
# image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension | |
# # Perform inference | |
# inputs = {session.get_inputs()[0].name: image_input} | |
# outputs = session.run(None, inputs) | |
# # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs] | |
# # boxes, confidences, class_probs = outputs | |
# # # Post-processing: Filter boxes by confidence threshold | |
# # detections = [] | |
# # for i, confidence in enumerate(confidences[0]): | |
# # if confidence >= confidence_threshold: | |
# # x1, y1, x2, y2 = boxes[0][i] | |
# # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability | |
# # detections.append((x1, y1, x2, y2, confidence, class_id)) | |
# # # Draw bounding boxes and labels on the image | |
# # for (x1, y1, x2, y2, confidence, class_id) in detections: | |
# # color = (0, 255, 0) # Green color for bounding boxes | |
# # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) | |
# # label = f"Class {class_id}: {confidence:.2f}" | |
# # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
# # # Convert the image back to BGR for displaying in Gradio | |
# # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# return outputs | |
# # Gradio interface to use the webcam for real-time object detection | |
# # Added a slider for the confidence threshold | |
# iface = gr.Interface(fn=detect_objects, | |
# #inputs=[ | |
# # gr.Video(sources="webcam", type="numpy"), # Webcam input | |
# inputs = gr.Image(sources=["webcam"], type="numpy"), | |
# # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider | |
# # ], | |
# outputs="image") # Show output image with bounding boxes | |
# iface.launch() | |
import gradio as gr | |
import cv2 | |
from huggingface_hub import hf_hub_download | |
from gradio_webrtc import WebRTC | |
from twilio.rest import Client | |
import os | |
from inference import YOLOv8 | |
model_file = hf_hub_download( | |
repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx" | |
) | |
model = YOLOv8(model_file) | |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
if account_sid and auth_token: | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = { | |
"iceServers": token.ice_servers, | |
"iceTransportPolicy": "relay", | |
} | |
else: | |
rtc_configuration = None | |
def detection(image, conf_threshold=0.3): | |
image = cv2.resize(image, (model.input_width, model.input_height)) | |
new_image = model.detect_objects(image, conf_threshold) | |
return cv2.resize(new_image, (500, 500)) | |
css = """.my-group {max-width: 600px !important; max-height: 600 !important;} | |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
YOLOv10 Webcam Stream (Powered by WebRTC ⚡️) | |
</h1> | |
""" | |
) | |
gr.HTML( | |
""" | |
<h3 style='text-align: center'> | |
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a> | |
</h3> | |
""" | |
) | |
with gr.Column(elem_classes=["my-column"]): | |
with gr.Group(elem_classes=["my-group"]): | |
image = WebRTC(label="Stream", rtc_configuration=rtc_configuration) | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.30, | |
) | |
image.stream( | |
fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10 | |
) | |
if __name__ == "__main__": | |
demo.launch() | |