Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import cv2 | |
# import numpy as np | |
# import onnxruntime as ort | |
# # Load the ONNX model using onnxruntime | |
# onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path | |
# session = ort.InferenceSession(onnx_model_path) | |
# # Function to perform object detection with the ONNX model | |
# def detect_objects(frame, confidence_threshold=0.5): | |
# # Convert the frame from BGR (OpenCV) to RGB | |
# image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# # Preprocessing: Resize and normalize the image | |
# # Assuming YOLO model input is 640x640, update according to your model's input size | |
# input_size = (640, 640) | |
# image_resized = cv2.resize(image, input_size) | |
# image_normalized = image_resized / 255.0 # Normalize to [0, 1] | |
# image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format | |
# image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension | |
# # Perform inference | |
# inputs = {session.get_inputs()[0].name: image_input} | |
# outputs = session.run(None, inputs) | |
# # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs] | |
# # boxes, confidences, class_probs = outputs | |
# # # Post-processing: Filter boxes by confidence threshold | |
# # detections = [] | |
# # for i, confidence in enumerate(confidences[0]): | |
# # if confidence >= confidence_threshold: | |
# # x1, y1, x2, y2 = boxes[0][i] | |
# # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability | |
# # detections.append((x1, y1, x2, y2, confidence, class_id)) | |
# # # Draw bounding boxes and labels on the image | |
# # for (x1, y1, x2, y2, confidence, class_id) in detections: | |
# # color = (0, 255, 0) # Green color for bounding boxes | |
# # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) | |
# # label = f"Class {class_id}: {confidence:.2f}" | |
# # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
# # # Convert the image back to BGR for displaying in Gradio | |
# # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# return outputs | |
# # Gradio interface to use the webcam for real-time object detection | |
# # Added a slider for the confidence threshold | |
# iface = gr.Interface(fn=detect_objects, | |
# #inputs=[ | |
# # gr.Video(sources="webcam", type="numpy"), # Webcam input | |
# inputs = gr.Image(sources=["webcam"], type="numpy"), | |
# # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider | |
# # ], | |
# outputs="image") # Show output image with bounding boxes | |
# iface.launch() | |
### | |
# import gradio as gr | |
# import cv2 | |
# from huggingface_hub import hf_hub_download | |
# from gradio_webrtc import WebRTC | |
# from twilio.rest import Client | |
# import os | |
# from inference import YOLOv8 | |
# model_file = hf_hub_download( | |
# repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx" | |
# ) | |
# model = YOLOv8(model_file) | |
# account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
# auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
# if account_sid and auth_token: | |
# client = Client(account_sid, auth_token) | |
# token = client.tokens.create() | |
# rtc_configuration = { | |
# "iceServers": token.ice_servers, | |
# "iceTransportPolicy": "relay", | |
# } | |
# else: | |
# rtc_configuration = None | |
# def detection(image, conf_threshold=0.3): | |
# image = cv2.resize(image, (model.input_width, model.input_height)) | |
# new_image = model.detect_objects(image, conf_threshold) | |
# return cv2.resize(new_image, (500, 500)) | |
# css = """.my-group {max-width: 600px !important; max-height: 600 !important;} | |
# .my-column {display: flex !important; justify-content: center !important; align-items: center !important};""" | |
# with gr.Blocks(css=css) as demo: | |
# gr.HTML( | |
# """ | |
# <h1 style='text-align: center'> | |
# YOLOv10 Webcam Stream (Powered by WebRTC ⚡️) | |
# </h1> | |
# """ | |
# ) | |
# gr.HTML( | |
# """ | |
# <h3 style='text-align: center'> | |
# <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a> | |
# </h3> | |
# """ | |
# ) | |
# with gr.Column(elem_classes=["my-column"]): | |
# with gr.Group(elem_classes=["my-group"]): | |
# image = WebRTC(label="Stream", rtc_configuration=rtc_configuration) | |
# conf_threshold = gr.Slider( | |
# label="Confidence Threshold", | |
# minimum=0.0, | |
# maximum=1.0, | |
# step=0.05, | |
# value=0.30, | |
# ) | |
# image.stream( | |
# fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10 | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# import numpy as np | |
# import cv2 | |
# from ultralytics import YOLO | |
# model = YOLO('Model_IV.pt') | |
# def transform_cv2(frame, transform): | |
# if transform == "cartoon": | |
# # prepare color | |
# img_color = cv2.pyrDown(cv2.pyrDown(frame)) | |
# for _ in range(6): | |
# img_color = cv2.bilateralFilter(img_color, 9, 9, 7) | |
# img_color = cv2.pyrUp(cv2.pyrUp(img_color)) | |
# # prepare edges | |
# img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
# img_edges = cv2.adaptiveThreshold( | |
# cv2.medianBlur(img_edges, 7), | |
# 255, | |
# cv2.ADAPTIVE_THRESH_MEAN_C, | |
# cv2.THRESH_BINARY, | |
# 9, | |
# 2, | |
# ) | |
# img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) | |
# # combine color and edges | |
# img = cv2.bitwise_and(img_color, img_edges) | |
# return img | |
# elif transform == "edges": | |
# # perform edge detection | |
# img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR) | |
# return img | |
# else: | |
# return np.flipud(frame) | |
# with gr.Blocks() as demo: | |
# with gr.Row(): | |
# with gr.Column(): | |
# transform = gr.Dropdown(choices=["cartoon", "edges", "flip"], | |
# value="flip", label="Transformation") | |
# input_img = gr.Image(sources=["webcam"], type="numpy") | |
# with gr.Column(): | |
# output_img = gr.Image(streaming=True) | |
# dep = input_img.stream(transform_cv2, [input_img, transform], [output_img], | |
# time_limit=30, stream_every=0.1, concurrency_limit=30) | |
# if __name__ == "__main__": | |
# demo.launch() | |
### | |
# import gradio as gr | |
# import torch | |
# import cv2 | |
# # Load the YOLOv8 model | |
# model = torch.hub.load('ultralytics/yolov8', 'yolov8s', trust_repo=True) | |
# model.load_state_dict(torch.load('Model_IV')) | |
# def inference(img): | |
# results = model(img) | |
# annotated_img = results.render()[0] | |
# return annotated_img | |
# iface = gr.Interface(fn=inference, inputs="webcam", outputs="image") | |
# iface.launch() | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import torchvision.transforms as T | |
from ultralytics import YOLO | |
import onnxruntime as ort | |
import cv2 | |
import numpy as np | |
# Load your model | |
# model = YOLO("Model_IV.pt") | |
# model = torch.load("Model_IV.pt") | |
# model.eval() | |
# checkpoint = torch.load("Model_IV.pt") | |
# model.load_state_dict(checkpoint) # Load the saved weights | |
# model.eval() # Set the model to evaluation mode | |
# Load the onnx model | |
model = ort.InferenceSession("Model_IV.onnx") | |
# Define preprocessing | |
# transform = T.Compose([ | |
# T.Resize((224, 224)), # Adjust to your model's input size | |
# T.ToTensor(), | |
# ]) | |
def predict(image): | |
# # Preprocess the image | |
# img_tensor = transform(image).unsqueeze(0) # Add batch dimension | |
# # # Make prediction | |
# # with torch.no_grad(): | |
# # output = model(img_tensor) | |
# # Process output (adjust based on your model's format) | |
# results = model(image) | |
# annotated_img = results[0].plot() | |
# return annotated_img | |
# Preprocess the image (resize, normalize, etc) | |
input_name = model.get_inputs()[0].name | |
input_shape = model.get_inputs()[0].shape | |
# Resize the image to the model's input shape | |
image = cv2.resize(img, (input_shape[2], input_shape[3])) | |
# Convert the image to a numpy array and add a batch dimension | |
image = np.expand_dims(img, axis=0) | |
# Perform inference | |
output = model.run(None, {input_name: image}) | |
print(type(output)) | |
print(output) | |
return image | |
# Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(sources=["webcam"], type="pil"), # Accepts image input | |
outputs="image" # Customize based on your output format | |
) | |
if __name__ == "__main__": | |
demo.launch() |