Spaces:
Sleeping
Sleeping
File size: 997 Bytes
db34d43 fb13326 5c2da46 fb13326 21f0007 d50b816 fb13326 bc0ea23 fb13326 f23dab3 bc0ea23 7d0861c ac724cd 23916db fb13326 f455cfd 32fbb84 23916db c1ff828 f455cfd fb13326 ba3b687 6fcee56 fb13326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import torch
from PIL import Image
import torchvision.transforms as T
from ultralytics import YOLO
# Load your model
model = YOLO("Model_IV.pt")
# Define preprocessing
transform = T.Compose([
T.Resize((224, 224)), # Adjust to your model's input size
T.ToTensor(),
])
def predict(image):
# Preprocess the image
img_tensor = transform(image).unsqueeze(0) # Add batch dimension
# # Make prediction
# with torch.no_grad():
# output = model(img_tensor)
# Process output (adjust based on your model's format)
# return output # or post-process the results as needed
results = model(image)
# print(type(results))
# print(results)
annotated_img = results[0].plot()
return annotated_img
# Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="webcam"), # Accepts image input
outputs="image" # Customize based on your output format
)
if __name__ == "__main__":
demo.launch() |