Spaces:
Sleeping
Sleeping
Create app_dropdown.py
Browse files- app_dropdown.py +30 -0
app_dropdown.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
pipe_base = pipeline("automatic-speech-recognition", model="aitor-medrano/whisper-base-lara")
|
7 |
+
pipe_small = pipeline("automatic-speech-recognition", model="aitor-medrano/whisper-small-lara")
|
8 |
+
|
9 |
+
def greet(modelo, grabacion):
|
10 |
+
sr, y = grabacion
|
11 |
+
# Pasamos el array de muestras a tipo NumPy de 32 bits
|
12 |
+
y = y.astype(np.float32)
|
13 |
+
y /= np.max(np.abs(y))
|
14 |
+
|
15 |
+
if modelo == "Base":
|
16 |
+
pipe = pipe_base
|
17 |
+
else:
|
18 |
+
pipe = pipe_small
|
19 |
+
|
20 |
+
return modelo + ":" + pipe({"sampling_rate": sr, "raw": y})["text"]
|
21 |
+
|
22 |
+
demo = gr.Interface(fn=greet,
|
23 |
+
inputs=[
|
24 |
+
gr.Dropdown(
|
25 |
+
["Base", "Small"], label="Modelo", info="Modelos de Lara entrenados"
|
26 |
+
),
|
27 |
+
gr.Audio()
|
28 |
+
],
|
29 |
+
outputs="text")
|
30 |
+
demo.launch()
|