cinevid / app.py
maxin-cn's picture
Upload folder using huggingface_hub
9e8c2c6 verified
raw
history blame
14.7 kB
import gradio as gr
import os
import torch
import argparse
import torchvision
from pipelines.pipeline_videogen import VideoGenPipeline
from diffusers.schedulers import DDIMScheduler
from diffusers.models import AutoencoderKL
from diffusers.models import AutoencoderKLTemporalDecoder
from transformers import CLIPTokenizer, CLIPTextModel
from omegaconf import OmegaConf
import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from models import get_models
import imageio
from PIL import Image
import numpy as np
from datasets import video_transforms
from torchvision import transforms
from einops import rearrange, repeat
from utils import dct_low_pass_filter, exchanged_mixed_dct_freq
from copy import deepcopy
import spaces
import requests
from datetime import datetime
import random
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/sample.yaml")
args = parser.parse_args()
args = OmegaConf.load(args.config)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 # torch.float16
unet = get_models(args).to(device, dtype=dtype)
if args.enable_vae_temporal_decoder:
if args.use_dct:
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device)
else:
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device)
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
else:
vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64)
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=dtype).to(device) # huge
# set eval mode
unet.eval()
vae.eval()
text_encoder.eval()
basedir = os.getcwd()
savedir = os.path.join(basedir, "samples/Gradio", datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
savedir_sample = os.path.join(savedir, "sample")
os.makedirs(savedir, exist_ok=True)
def update_and_resize_image(input_image_path, height_slider, width_slider):
if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
else:
pil_image = Image.open(input_image_path).convert('RGB')
original_width, original_height = pil_image.size
if original_height == height_slider and original_width == width_slider:
return gr.Image(value=np.array(pil_image))
ratio1 = height_slider / original_height
ratio2 = width_slider / original_width
if ratio1 > ratio2:
new_width = int(original_width * ratio1)
new_height = int(original_height * ratio1)
else:
new_width = int(original_width * ratio2)
new_height = int(original_height * ratio2)
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - width_slider) / 2
top = (new_height - height_slider) / 2
right = left + width_slider
bottom = top + height_slider
pil_image = pil_image.crop((left, top, right, bottom))
return gr.Image(value=np.array(pil_image))
def update_textbox_and_save_image(input_image, height_slider, width_slider):
pil_image = Image.fromarray(input_image.astype(np.uint8)).convert("RGB")
original_width, original_height = pil_image.size
ratio1 = height_slider / original_height
ratio2 = width_slider / original_width
if ratio1 > ratio2:
new_width = int(original_width * ratio1)
new_height = int(original_height * ratio1)
else:
new_width = int(original_width * ratio2)
new_height = int(original_height * ratio2)
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - width_slider) / 2
top = (new_height - height_slider) / 2
right = left + width_slider
bottom = top + height_slider
pil_image = pil_image.crop((left, top, right, bottom))
img_path = os.path.join(savedir, "input_image.png")
pil_image.save(img_path)
return gr.Textbox(value=img_path), gr.Image(value=np.array(pil_image))
def prepare_image(image, vae, transform_video, device, dtype=torch.float16):
image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2)
image = transform_video(image)
image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor)
image = image.unsqueeze(2)
return image
@spaces.GPU
def gen_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed):
torch.manual_seed(seed)
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
videogen_pipeline = VideoGenPipeline(vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
unet=unet).to(device)
# videogen_pipeline.enable_xformers_memory_efficient_attention()
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
if args.use_dct:
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device)
else:
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device)
if use_dctinit:
# filter params
print("Using DCT!")
base_content_repeat = repeat(base_content, 'b c f h w -> b c (f r) h w', r=15).contiguous()
# define filter
freq_filter = dct_low_pass_filter(dct_coefficients=base_content, percentage=dct_coefficients)
noise = torch.randn(1, 4, 15, 40, 64).to(device)
# add noise to base_content
diffuse_timesteps = torch.full((1,),int(noise_level))
diffuse_timesteps = diffuse_timesteps.long()
# 3d content
base_content_noise = scheduler.add_noise(
original_samples=base_content_repeat.to(device),
noise=noise,
timesteps=diffuse_timesteps.to(device))
# 3d content
latents = exchanged_mixed_dct_freq(noise=noise,
base_content=base_content_noise,
LPF_3d=freq_filter).to(dtype=torch.float16)
base_content = base_content.to(dtype=torch.float16)
videos = videogen_pipeline(prompt,
negative_prompt=negative_prompt,
latents=latents if use_dctinit else None,
base_content=base_content,
video_length=15,
height=height,
width=width,
num_inference_steps=diffusion_step,
guidance_scale=scfg_scale,
motion_bucket_id=100-motion_bucket_id,
enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video
save_path = args.save_img_path + 'temp' + '.mp4'
# torchvision.io.write_video(save_path, videos[0], fps=8, video_codec='h264', options={'crf': '10'})
imageio.mimwrite(save_path, videos[0], fps=8, quality=7)
return save_path
if not os.path.exists(args.save_img_path):
os.makedirs(args.save_img_path)
with gr.Blocks() as demo:
gr.Markdown("<font color=red size=6.5><center>Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models</center></font>")
gr.Markdown(
"""<div style="display: flex;align-items: center;justify-content: center">
[<a href="https://arxiv.org/abs/2407.15642">Arxiv Report</a>] | [<a href="https://https://maxin-cn.github.io/cinemo_project/">Project Page</a>] | [<a href="https://github.com/maxin-cn/Cinemo">Github</a>]</div>
"""
)
with gr.Column(variant="panel"):
with gr.Row():
prompt_textbox = gr.Textbox(label="Prompt", lines=1)
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True)
generate_button = gr.Button(value="Generate", variant='primary')
with gr.Accordion("Advanced options", open=False):
gr.Markdown(
"""
- Input image can be specified using the "Input Image URL" text box or uploaded by clicking or dragging the image to the "Input Image" box.
- Input image will be resized and/or center cropped to a given resolution (320 x 512) automatically.
- After setting the input image path, press the "Preview" button to visualize the resized input image.
"""
)
with gr.Column():
with gr.Row():
input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.")
preview_button = gr.Button(value="Preview")
with gr.Row():
sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1)
with gr.Row():
seed_textbox = gr.Slider(label="Seed", value=100, minimum=1, maximum=int(1e8), step=1, interactive=True)
# seed_textbox = gr.Textbox(label="Seed", value=100)
# seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
# seed_button.click(fn=lambda: gr.Textbox(value=random.randint(1, int(1e8))), inputs=[], outputs=[seed_textbox])
with gr.Row():
height = gr.Slider(label="Height", value=320, minimum=0, maximum=512, step=16, interactive=False)
width = gr.Slider(label="Width", value=512, minimum=0, maximum=512, step=16, interactive=False)
with gr.Row():
txt_cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1.0, maximum=20.0, step=0.1, interactive=True)
motion_bucket_id = gr.Slider(label="Motion Intensity", value=10, minimum=1, maximum=20, step=1, interactive=True)
with gr.Row():
use_dctinit = gr.Checkbox(label="Enable DCTInit", value=True)
dct_coefficients = gr.Slider(label="DCT Coefficients", value=0.23, minimum=0, maximum=1, step=0.01, interactive=True)
noise_level = gr.Slider(label="Noise Level", value=985, minimum=1, maximum=999, step=1, interactive=True)
input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height, width], outputs=[input_image_path, input_image])
preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
EXAMPLES = [
["./example/aircrafts_flying/0.jpg", "aircrafts flying" , "low quality", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
["./example/fireworks/0.jpg", "fireworks" , "low quality", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
["./example/flowers_swaying/0.jpg", "flowers swaying" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
["./example/girl_walking_on_the_beach/0.jpg", "girl walking on the beach" , "low quality, background changing", 50, 320, 512, 7.5, True, 0.25, 995, 10, 49494220],
["./example/house_rotating/0.jpg", "house rotating" , "low quality", 50, 320, 512, 7.5, True, 0.23, 985, 10, 46640174],
["./example/people_runing/0.jpg", "people runing" , "low quality, background changing", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
["./example/shark_swimming/0.jpg", "shark swimming" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 32947978],
["./example/car_moving/0.jpg", "car moving" , "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 75469653],
["./example/windmill_turning/0.jpg", "windmill turning" , "background changing", 50, 320, 512, 7.5, True, 0.21, 975, 10, 89378613],
]
examples = gr.Examples(
examples = EXAMPLES,
fn = gen_video,
inputs=[input_image, prompt_textbox, negative_prompt_textbox, sample_step_slider, height, width, txt_cfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed_textbox],
outputs=[result_video],
# cache_examples=True,
cache_examples="lazy",
)
generate_button.click(
fn=gen_video,
inputs=[
input_image,
prompt_textbox,
negative_prompt_textbox,
sample_step_slider,
height,
width,
txt_cfg_scale,
use_dctinit,
dct_coefficients,
noise_level,
motion_bucket_id,
seed_textbox,
],
outputs=[result_video]
)
demo.launch(debug=False, share=True, server_name="127.0.0.1")