AlekseyCalvin
commited on
Commit
•
5511562
1
Parent(s):
6ebd799
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ with open('loras.json', 'r') as f:
|
|
14 |
loras = json.load(f)
|
15 |
|
16 |
# Initialize the base model
|
17 |
-
base_model = "
|
18 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
19 |
|
20 |
MAX_SEED = 2**32-1
|
@@ -57,7 +57,7 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
57 |
)
|
58 |
|
59 |
@spaces.GPU(duration=70)
|
60 |
-
def
|
61 |
pipe.to("cuda")
|
62 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
63 |
|
@@ -65,6 +65,7 @@ def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height,
|
|
65 |
# Generate image
|
66 |
image = pipe(
|
67 |
prompt=f"{prompt} {trigger_word}",
|
|
|
68 |
num_inference_steps=steps,
|
69 |
guidance_scale=cfg_scale,
|
70 |
width=width,
|
@@ -74,7 +75,7 @@ def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height,
|
|
74 |
).images[0]
|
75 |
return image
|
76 |
|
77 |
-
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
78 |
if selected_index is None:
|
79 |
raise gr.Error("You must select a LoRA before proceeding.")
|
80 |
|
@@ -94,7 +95,7 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
94 |
if randomize_seed:
|
95 |
seed = random.randint(0, MAX_SEED)
|
96 |
|
97 |
-
image =
|
98 |
pipe.to("cpu")
|
99 |
pipe.unload_lora_weights()
|
100 |
return image, seed
|
@@ -110,22 +111,24 @@ css = '''
|
|
110 |
'''
|
111 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
112 |
title = gr.HTML(
|
113 |
-
"""<h1><img src="https://huggingface.co/
|
114 |
elem_id="title",
|
115 |
)
|
116 |
# Info blob stating what the app is running
|
117 |
info_blob = gr.HTML(
|
118 |
-
"""<div id="info_blob">
|
119 |
)
|
120 |
|
121 |
# Info blob stating what the app is running
|
122 |
info_blob = gr.HTML(
|
123 |
-
"""<div id="info_blob">Prephrase prompts w/:
|
124 |
)
|
125 |
selected_index = gr.State(None)
|
126 |
with gr.Row():
|
127 |
-
with gr.Column(scale=
|
128 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
|
|
|
|
|
129 |
with gr.Column(scale=1, elem_id="gen_column"):
|
130 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
131 |
with gr.Row():
|
@@ -146,17 +149,17 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
146 |
with gr.Accordion("Advanced Settings", open=True):
|
147 |
with gr.Column():
|
148 |
with gr.Row():
|
149 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.5, value=
|
150 |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=4)
|
151 |
|
152 |
with gr.Row():
|
153 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=
|
154 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=
|
155 |
|
156 |
with gr.Row():
|
157 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
158 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
159 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3.0, step=0.01, value=0
|
160 |
|
161 |
gallery.select(
|
162 |
update_selection,
|
@@ -167,7 +170,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
167 |
gr.on(
|
168 |
triggers=[generate_button.click, prompt.submit],
|
169 |
fn=run_lora,
|
170 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
171 |
outputs=[result, seed]
|
172 |
)
|
173 |
|
|
|
14 |
loras = json.load(f)
|
15 |
|
16 |
# Initialize the base model
|
17 |
+
base_model = "stabilityai/stable-diffusion-3.5-large-turbo"
|
18 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
19 |
|
20 |
MAX_SEED = 2**32-1
|
|
|
57 |
)
|
58 |
|
59 |
@spaces.GPU(duration=70)
|
60 |
+
def infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
61 |
pipe.to("cuda")
|
62 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
63 |
|
|
|
65 |
# Generate image
|
66 |
image = pipe(
|
67 |
prompt=f"{prompt} {trigger_word}",
|
68 |
+
negative_prompt=negative_prompt,
|
69 |
num_inference_steps=steps,
|
70 |
guidance_scale=cfg_scale,
|
71 |
width=width,
|
|
|
75 |
).images[0]
|
76 |
return image
|
77 |
|
78 |
+
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
79 |
if selected_index is None:
|
80 |
raise gr.Error("You must select a LoRA before proceeding.")
|
81 |
|
|
|
95 |
if randomize_seed:
|
96 |
seed = random.randint(0, MAX_SEED)
|
97 |
|
98 |
+
image = infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
99 |
pipe.to("cpu")
|
100 |
pipe.unload_lora_weights()
|
101 |
return image, seed
|
|
|
111 |
'''
|
112 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
113 |
title = gr.HTML(
|
114 |
+
"""<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""",
|
115 |
elem_id="title",
|
116 |
)
|
117 |
# Info blob stating what the app is running
|
118 |
info_blob = gr.HTML(
|
119 |
+
"""<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Stable Diffusion 3.5 Turbo. Now testing HST-triggerable historic photo-trained LoRAs. </div>"""
|
120 |
)
|
121 |
|
122 |
# Info blob stating what the app is running
|
123 |
info_blob = gr.HTML(
|
124 |
+
"""<div id="info_blob">Prephrase prompts w/: "HST style autochrome photo" </div>"""
|
125 |
)
|
126 |
selected_index = gr.State(None)
|
127 |
with gr.Row():
|
128 |
+
with gr.Column(scale=2):
|
129 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
|
130 |
+
with gr.Column(scale=2):
|
131 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="What to exclude!")
|
132 |
with gr.Column(scale=1, elem_id="gen_column"):
|
133 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
134 |
with gr.Row():
|
|
|
149 |
with gr.Accordion("Advanced Settings", open=True):
|
150 |
with gr.Column():
|
151 |
with gr.Row():
|
152 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.5, value=4)
|
153 |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=4)
|
154 |
|
155 |
with gr.Row():
|
156 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
157 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
158 |
|
159 |
with gr.Row():
|
160 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
161 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
162 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3.0, step=0.01, value=1.0)
|
163 |
|
164 |
gallery.select(
|
165 |
update_selection,
|
|
|
170 |
gr.on(
|
171 |
triggers=[generate_button.click, prompt.submit],
|
172 |
fn=run_lora,
|
173 |
+
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
174 |
outputs=[result, seed]
|
175 |
)
|
176 |
|