AlekseyCalvin
commited on
Commit
•
2bee297
1
Parent(s):
bcee7ad
Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,11 @@ from PIL import Image
|
|
8 |
import spaces
|
9 |
from diffusers import DiffusionPipeline, AutoPipelineForText2Image
|
10 |
from diffusers import StableDiffusion3Pipeline, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel # pip install diffusers>=0.31.0
|
|
|
11 |
import copy
|
12 |
import random
|
13 |
import time
|
|
|
14 |
from huggingface_hub import login, hf_hub_download
|
15 |
import safetensors.torch
|
16 |
from safetensors.torch import load_file
|
@@ -38,6 +40,24 @@ with open('loras.json', 'r') as f:
|
|
38 |
#base_model = "stabilityai/stable-diffusion-3.5-large"
|
39 |
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
#pipe.transformer.to(memory_format=torch.channels_last)
|
42 |
#pipe.vae.to(memory_format=torch.channels_last)
|
43 |
|
|
|
8 |
import spaces
|
9 |
from diffusers import DiffusionPipeline, AutoPipelineForText2Image
|
10 |
from diffusers import StableDiffusion3Pipeline, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel # pip install diffusers>=0.31.0
|
11 |
+
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
|
12 |
import copy
|
13 |
import random
|
14 |
import time
|
15 |
+
from huggingface_hub import HfFileSystem, ModelCard
|
16 |
from huggingface_hub import login, hf_hub_download
|
17 |
import safetensors.torch
|
18 |
from safetensors.torch import load_file
|
|
|
40 |
#base_model = "stabilityai/stable-diffusion-3.5-large"
|
41 |
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
|
42 |
|
43 |
+
clipmodel = 'norm'
|
44 |
+
if clipmodel == "long":
|
45 |
+
model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
|
46 |
+
config = CLIPConfig.from_pretrained(model_id)
|
47 |
+
maxtokens = 248
|
48 |
+
if clipmodel == "norm":
|
49 |
+
model_id = "zer0int/CLIP-GmP-ViT-L-14"
|
50 |
+
config = CLIPConfig.from_pretrained(model_id)
|
51 |
+
maxtokens = 77
|
52 |
+
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
|
53 |
+
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
|
54 |
+
|
55 |
+
pipe.tokenizer = clip_processor.tokenizer
|
56 |
+
pipe.text_encoder = clip_model.text_model
|
57 |
+
pipe.tokenizer_max_length = maxtokens
|
58 |
+
pipe.text_encoder.dtype = torch.bfloat16
|
59 |
+
|
60 |
+
|
61 |
#pipe.transformer.to(memory_format=torch.channels_last)
|
62 |
#pipe.vae.to(memory_format=torch.channels_last)
|
63 |
|