DamarJati commited on
Commit
69620c8
·
verified ·
1 Parent(s): 67d8f48

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -0
app.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ from diffusers import DiffusionPipeline
6
+ import random
7
+
8
+ # Initialize the base model and specific LoRA
9
+ base_model = "black-forest-labs/FLUX.1-dev"
10
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
11
+ pipe.to("cuda")
12
+
13
+ lora_repo = "XLabs-AI/flux-RealismLora"
14
+ trigger_word = "" # Leave trigger_word blank if not used.
15
+ pipe.load_lora_weights(lora_repo)
16
+
17
+ MAX_SEED = 2**32-1
18
+
19
+ @spaces.GPU(duration=80)
20
+ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
21
+ # Set random seed for reproducibility
22
+ if randomize_seed:
23
+ seed = random.randint(0, MAX_SEED)
24
+ generator = torch.Generator(device="cuda").manual_seed(seed)
25
+
26
+ # Update progress bar (0% saat mulai)
27
+ progress(0, "Starting image generation...")
28
+
29
+ # Generate image with progress updates
30
+ for i in range(1, steps + 1):
31
+ # Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
32
+ if i % (steps // 10) == 0: # Update every 10% of the steps
33
+ progress(i / steps * 100, f"Processing step {i} of {steps}...")
34
+
35
+ # Generate image using the pipeline
36
+ image = pipe(
37
+ prompt=f"{prompt} {trigger_word}",
38
+ num_inference_steps=steps,
39
+ guidance_scale=cfg_scale,
40
+ width=width,
41
+ height=height,
42
+ generator=generator,
43
+ joint_attention_kwargs={"scale": lora_scale},
44
+ ).images[0]
45
+
46
+ # Final update (100%)
47
+ progress(100, "Completed!")
48
+
49
+ yield image, seed
50
+
51
+ # Example cached image and settings
52
+ example_image_path = "example0.webp" # Replace with the actual path to the example image
53
+ example_prompt = """A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately.
54
+
55
+ The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. The lanyard prominently displays the "CagliostroLab" text.
56
+
57
+ Behind her, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy of her presentation."""
58
+ example_cfg_scale = 3.2
59
+ example_steps = 32
60
+ example_width = 1152
61
+ example_height = 896
62
+ example_seed = 3981632454
63
+ example_lora_scale = 0.85
64
+
65
+ def load_example():
66
+ # Load example image from file
67
+ example_image = Image.open(example_image_path)
68
+ return example_prompt, example_cfg_scale, example_steps, False, example_seed, example_width, example_height, example_lora_scale, example_image
69
+
70
+ with gr.Blocks() as app:
71
+ gr.Markdown("# Flux LoRA Image Generator")
72
+ with gr.Row():
73
+ with gr.Column(scale=3):
74
+ prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
75
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
76
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
77
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
78
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
79
+ randomize_seed = gr.Checkbox(False, label="Randomize seed")
80
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
81
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
82
+ with gr.Column(scale=1):
83
+ result = gr.Image(label="Generated Image")
84
+
85
+ # Automatically load example data and image when the interface is launched
86
+ app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
87
+
88
+ generate_button = gr.Button("Generate")
89
+
90
+ generate_button.click(
91
+ run_lora,
92
+ inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
93
+ outputs=[result, seed]
94
+ )
95
+
96
+ app.queue()
97
+ app.launch()