Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
import random | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# Initialize the base model and specific LoRA | |
base_model = "black-forest-labs/FLUX.1-dev" | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA" | |
trigger_word = "" # Leave trigger_word blank if not used. | |
pipe.load_lora_weights(lora_repo) | |
pipe.to("cuda") | |
MAX_SEED = 2**32-1 | |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
# Set random seed for reproducibility | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
# Update progress bar (0% saat mulai) | |
progress(0, "Starting image generation...") | |
# Generate image with progress updates | |
for i in range(1, steps + 1): | |
# Simulate the processing step (in a real scenario, you would integrate this with your image generation process) | |
if i % (steps // 10) == 0: # Update every 10% of the steps | |
progress(i / steps * 100, f"Processing step {i} of {steps}...") | |
# Generate image using the pipeline | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
# Final update (100%) | |
progress(100, "Completed!") | |
yield image, seed | |
# Example cached image and settings | |
example_image_path = "example0.webp" # Replace with the actual path to the example image | |
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene.""" | |
example_cfg_scale = 3.2 | |
example_steps = 32 | |
example_width = 1152 | |
example_height = 896 | |
example_seed = 3981632454 | |
example_lora_scale = 0.85 | |
def load_example(): | |
# Load example image from file | |
example_image = Image.open(example_image_path) | |
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image | |
with gr.Blocks() as app: | |
gr.Markdown("# MY First 'Flux ART Image Generator'") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5) | |
generate_button = gr.Button("Generate") | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps) | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height) | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale) | |
with gr.Column(scale=1): | |
result = gr.Image(label="Generated Image") | |
# Automatically load example data and image when the interface is launched | |
app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]) | |
generate_button.click( | |
run_lora, | |
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], | |
outputs=[result, seed] | |
) | |
app.queue() | |
app.launch() |