Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
import random | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cuda.matmul.allow_tf32 = True | |
base_model = "black-forest-labs/FLUX.1-dev" | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA" | |
trigger_word = "" | |
pipe.load_lora_weights(lora_repo) | |
pipe.to("cuda") | |
MAX_SEED = 2**32-1 | |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
progress(0, "Starting image generation...") | |
for i in range(1, steps + 1): | |
if i % (steps // 10) == 0: | |
progress(i / steps * 100, f"Processing step {i} of {steps}...") | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
progress(100, "Completed!") | |
return image, seed | |
example_image_path = "example0.webp" | |
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene.""" | |
example_cfg_scale = 3.2 | |
example_steps = 32 | |
example_width = 1152 | |
example_height = 896 | |
example_seed = 3981632454 | |
example_lora_scale = 0.85 | |
def load_example(): | |
example_image = Image.open(example_image_path) | |
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image | |
css = """ | |
.container {max-width: 1200px; margin: auto; padding: 20px;} | |
.header {text-align: center; margin-bottom: 30px;} | |
.generate-btn {background-color: #2ecc71 !important; color: white !important;} | |
.generate-btn:hover {background-color: #27ae60 !important;} | |
.parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;} | |
.result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px;} | |
""" | |
with gr.Blocks(css=css) as app: | |
with gr.Column(elem_classes="container"): | |
gr.Markdown("# π¨ Flux ART Image Generator", elem_classes="header") | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=3): | |
with gr.Group(elem_classes="parameter-box"): | |
prompt = gr.TextArea( | |
label="βοΈ Your Prompt", | |
placeholder="Describe the image you want to generate...", | |
lines=5 | |
) | |
with gr.Group(elem_classes="parameter-box"): | |
gr.Markdown("### ποΈ Generation Parameters") | |
with gr.Row(): | |
with gr.Column(): | |
cfg_scale = gr.Slider( | |
label="CFG Scale", | |
minimum=1, | |
maximum=20, | |
step=0.5, | |
value=example_cfg_scale | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=example_steps | |
) | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=example_lora_scale | |
) | |
with gr.Group(elem_classes="parameter-box"): | |
gr.Markdown("### π Image Dimensions") | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1536, | |
step=64, | |
value=example_width | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1536, | |
step=64, | |
value=example_height | |
) | |
with gr.Group(elem_classes="parameter-box"): | |
gr.Markdown("### π² Seed Settings") | |
with gr.Row(): | |
randomize_seed = gr.Checkbox( | |
True, | |
label="Randomize seed" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=example_seed | |
) | |
generate_button = gr.Button( | |
"π Generate Image", | |
elem_classes="generate-btn" | |
) | |
with gr.Column(scale=2): | |
with gr.Group(elem_classes="result-box"): | |
gr.Markdown("### πΌοΈ Generated Image") | |
result = gr.Image(label="Result") | |
app.load( | |
load_example, | |
inputs=[], | |
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result] | |
) | |
generate_button.click( | |
run_lora, | |
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], | |
outputs=[result, seed] | |
) | |
app.queue() | |
app.launch() |