aiqcamp commited on
Commit
2935b7a
·
verified ·
1 Parent(s): 80c4a3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -154
README.md CHANGED
@@ -8,157 +8,3 @@ app_file: app.py
8
  pinned: false
9
  short_description: generated sound from video/text and search
10
  ---
11
-
12
- Based by @
13
- # [Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis](https://hkchengrex.github.io/MMAudio)
14
-
15
- [Ho Kei Cheng](https://hkchengrex.github.io/), [Masato Ishii](https://scholar.google.co.jp/citations?user=RRIO1CcAAAAJ), [Akio Hayakawa](https://scholar.google.com/citations?user=sXAjHFIAAAAJ), [Takashi Shibuya](https://scholar.google.com/citations?user=XCRO260AAAAJ), [Alexander Schwing](https://www.alexander-schwing.de/), [Yuki Mitsufuji](https://www.yukimitsufuji.com/)
16
-
17
- University of Illinois Urbana-Champaign, Sony AI, and Sony Group Corporation
18
-
19
-
20
- [[Paper (being prepared)]](https://hkchengrex.github.io/MMAudio) [[Project Page]](https://hkchengrex.github.io/MMAudio)
21
-
22
-
23
- **Note: This repository is still under construction. Single-example inference should work as expected. The training code will be added. Code is subject to non-backward-compatible changes.**
24
-
25
- ## Highlight
26
-
27
- MMAudio generates synchronized audio given video and/or text inputs.
28
- Our key innovation is multimodal joint training which allows training on a wide range of audio-visual and audio-text datasets.
29
- Moreover, a synchronization module aligns the generated audio with the video frames.
30
-
31
-
32
- ## Results
33
-
34
- (All audio from our algorithm MMAudio)
35
-
36
- Videos from Sora:
37
-
38
- https://github.com/user-attachments/assets/82afd192-0cee-48a1-86ca-bd39b8c8f330
39
-
40
-
41
- Videos from MovieGen/Hunyuan Video/VGGSound:
42
-
43
- https://github.com/user-attachments/assets/29230d4e-21c1-4cf8-a221-c28f2af6d0ca
44
-
45
- For more results, visit https://hkchengrex.com/MMAudio/video_main.html.
46
-
47
- ## Installation
48
-
49
- We have only tested this on Ubuntu.
50
-
51
- ### Prerequisites
52
-
53
- We recommend using a [miniforge](https://github.com/conda-forge/miniforge) environment.
54
-
55
- - Python 3.8+
56
- - PyTorch **2.5.1+** and corresponding torchvision/torchaudio (pick your CUDA version https://pytorch.org/)
57
- - ffmpeg<7 ([this is required by torchaudio](https://pytorch.org/audio/master/installation.html#optional-dependencies), you can install it in a miniforge environment with `conda install -c conda-forge 'ffmpeg<7'`)
58
-
59
- **Clone our repository:**
60
-
61
- ```bash
62
- git clone https://github.com/hkchengrex/MMAudio.git
63
- ```
64
-
65
- **Install with pip:**
66
-
67
- ```bash
68
- cd MMAudio
69
- pip install -e .
70
- ```
71
-
72
- (If you encounter the File "setup.py" not found error, upgrade your pip with pip install --upgrade pip)
73
-
74
- **Pretrained models:**
75
-
76
- The models will be downloaded automatically when you run the demo script. MD5 checksums are provided in `mmaudio/utils/download_utils.py`
77
-
78
- | Model | Download link | File size |
79
- | -------- | ------- | ------- |
80
- | Flow prediction network, small 16kHz | <a href="https://databank.illinois.edu/datafiles/k6jve/download" download="mmaudio_small_16k.pth">mmaudio_small_16k.pth</a> | 601M |
81
- | Flow prediction network, small 44.1kHz | <a href="https://databank.illinois.edu/datafiles/864ya/download" download="mmaudio_small_44k.pth">mmaudio_small_44k.pth</a> | 601M |
82
- | Flow prediction network, medium 44.1kHz | <a href="https://databank.illinois.edu/datafiles/pa94t/download" download="mmaudio_medium_44k.pth">mmaudio_medium_44k.pth</a> | 2.4G |
83
- | Flow prediction network, large 44.1kHz **(recommended)** | <a href="https://databank.illinois.edu/datafiles/4jx76/download" download="mmaudio_large_44k.pth">mmaudio_large_44k.pth</a> | 3.9G |
84
- | 16kHz VAE | <a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-16.pth">v1-16.pth</a> | 655M |
85
- | 16kHz BigVGAN vocoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/best_netG.pt">best_netG.pt</a> | 429M |
86
- | 44.1kHz VAE |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-44.pth">v1-44.pth</a> | 1.2G |
87
- | Synchformer visual encoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/synchformer_state_dict.pth">synchformer_state_dict.pth</a> | 907M |
88
-
89
- The 44.1kHz vocoder will be downloaded automatically.
90
-
91
- The expected directory structure (full):
92
-
93
- ```bash
94
- MMAudio
95
- ├── ext_weights
96
- │ ├── best_netG.pt
97
- │ ├── synchformer_state_dict.pth
98
- │ ├── v1-16.pth
99
- │ └── v1-44.pth
100
- ├── weights
101
- │ ├── mmaudio_small_16k.pth
102
- │ ├── mmaudio_small_44k.pth
103
- │ ├── mmaudio_medium_44k.pth
104
- │ └── mmaudio_large_44k.pth
105
- └── ...
106
- ```
107
-
108
- The expected directory structure (minimal, for the recommended model only):
109
-
110
- ```bash
111
- MMAudio
112
- ├── ext_weights
113
- │ ├── synchformer_state_dict.pth
114
- │ └── v1-44.pth
115
- ├── weights
116
- │ └── mmaudio_large_44k.pth
117
- └── ...
118
- ```
119
-
120
- ## Demo
121
-
122
- By default, these scripts use the `large_44k` model.
123
- In our experiments, inference only takes around 6GB of GPU memory (in 16-bit mode) which should fit in most modern GPUs.
124
-
125
- ### Command-line interface
126
-
127
- With `demo.py`
128
- ```bash
129
- python demo.py --duration=8 --video=<path to video> --prompt "your prompt"
130
- ```
131
- The output (audio in `.flac` format, and video in `.mp4` format) will be saved in `./output`.
132
- See the file for more options.
133
- Simply omit the `--video` option for text-to-audio synthesis.
134
- The default output (and training) duration is 8 seconds. Longer/shorter durations could also work, but a large deviation from the training duration may result in a lower quality.
135
-
136
-
137
- ### Gradio interface
138
-
139
- Supports video-to-audio and text-to-audio synthesis.
140
-
141
- ```
142
- python gradio_demo.py
143
- ```
144
-
145
- ### Known limitations
146
-
147
- 1. The model sometimes generates undesired unintelligible human speech-like sounds
148
- 2. The model sometimes generates undesired background music
149
- 3. The model struggles with unfamiliar concepts, e.g., it can generate "gunfires" but not "RPG firing".
150
-
151
- We believe all of these three limitations can be addressed with more high-quality training data.
152
-
153
- ## Training
154
- Work in progress.
155
-
156
- ## Evaluation
157
- Work in progress.
158
-
159
- ## Acknowledgement
160
- Many thanks to:
161
- - [Make-An-Audio 2](https://github.com/bytedance/Make-An-Audio-2) for the 16kHz BigVGAN pretrained model
162
- - [BigVGAN](https://github.com/NVIDIA/BigVGAN)
163
- - [Synchformer](https://github.com/v-iashin/Synchformer)
164
-
 
8
  pinned: false
9
  short_description: generated sound from video/text and search
10
  ---