Spaces:
Runtime error
Runtime error
KarthickAdopleAI
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,167 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import random
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
from sales_helper import SalesGPT
|
6 |
+
from langchain_openai import AzureChatOpenAI
|
7 |
+
from openai import AzureOpenAI
|
8 |
+
llm = AzureChatOpenAI(temperature=0,deployment_name="GPT-3")
|
9 |
+
from time import sleep
|
10 |
+
sales_agent = SalesGPT.from_llm(llm, verbose=False)
|
11 |
+
# init sales agent
|
12 |
+
sales_agent.seed_agent()
|
13 |
+
stage = "\n"
|
14 |
+
bot_conversation = ""
|
15 |
+
customer_conversation = ""
|
16 |
+
convo_history = sales_agent.conversation_history
|
17 |
+
client = AzureOpenAI()
|
18 |
+
def user(user_message, history):
|
19 |
+
if user_message:
|
20 |
+
sales_agent.human_step(user_message)
|
21 |
+
return "", history + [[user_message, None]]
|
22 |
+
|
23 |
+
def stages():
|
24 |
+
global stage
|
25 |
+
stage += "\n\n"+sales_agent.determine_conversation_stage()
|
26 |
+
return stage
|
27 |
+
|
28 |
+
def download_report():
|
29 |
+
global convo_history
|
30 |
+
sales_evaluation_criteria = {
|
31 |
+
"understanding": "Does the salesperson understand the customer pain points and challenges?",
|
32 |
+
"opening_effectiveness": "Was the opening of the pitch effective?",
|
33 |
+
"focus_on_benefits": "Was there sufficient focus and emphasis on customer benefits of the products/features pitched?",
|
34 |
+
"trust_building": "Did the salesperson establish trust and credibility by sharing testimonials, case studies, references, success stories of other satisfied customers?",
|
35 |
+
"urgency_creation": "Did the salesperson create urgency, such as through time-sensitive offers or consequences of not taking the decision?",
|
36 |
+
"objection_handling": "Did the salesperson handle objections well and proactively address/prepared for the objections?",
|
37 |
+
"engagement": "Was the conversation engaging?",
|
38 |
+
"balance_of_talk_and_listen": "Was there a balance between the salesperson talking and listening to the customer?",
|
39 |
+
"closing_strategy": "Was there a clear call to action, summarization, and reiteration of the value proposition in the close strategy?",
|
40 |
+
"purposefulness": "Throughout the pitch/conversation, was the conversation purposeful, and did it end with clear next steps?"
|
41 |
+
}
|
42 |
+
client = AzureOpenAI()
|
43 |
+
|
44 |
+
conversation = [
|
45 |
+
{"role": "system", "content": f"You Are Context verification Reporter.using these condition {sales_evaluation_criteria} to verify following context to Give me a Report Form of the context Scoring and Reason for Scoring."},
|
46 |
+
{"role": "user", "content": f""" this is the Context:{convo_history}.
|
47 |
+
"""}
|
48 |
+
]
|
49 |
+
response = client.chat.completions.create(
|
50 |
+
model="GPT-3",
|
51 |
+
messages=conversation,
|
52 |
+
temperature=0,
|
53 |
+
max_tokens=1000
|
54 |
+
)
|
55 |
+
|
56 |
+
message = response.choices[0].message.content
|
57 |
+
report_file_path = f"report.txt"
|
58 |
+
with open(report_file_path,"w") as file:
|
59 |
+
file.write(message)
|
60 |
+
|
61 |
+
return message
|
62 |
+
|
63 |
+
def bot(history):
|
64 |
+
bot_message = sales_agent._call({})
|
65 |
+
history[-1][1] = ""
|
66 |
+
for character in bot_message:
|
67 |
+
history[-1][1] += character
|
68 |
+
time.sleep(0.05)
|
69 |
+
yield history
|
70 |
+
summarizer = Summarizer()
|
71 |
+
sentiment = SentimentAnalyzer()
|
72 |
+
|
73 |
+
def history_of_both(convo_history):
|
74 |
+
# Initialize lists to store messages from customer and bot
|
75 |
+
customer_messages = []
|
76 |
+
bot_messages = []
|
77 |
+
|
78 |
+
# Iterate through the input list
|
79 |
+
for message in input_list:
|
80 |
+
if message.endswith('<END_OF_TURN>'):
|
81 |
+
# Customer message
|
82 |
+
if len(customer_messages) == len(bot_messages):
|
83 |
+
customer_messages.append(message[:-13])
|
84 |
+
else:
|
85 |
+
bot_messages.append(message[:-13])
|
86 |
+
else:
|
87 |
+
# Bot message
|
88 |
+
if len(customer_messages) == len(bot_messages):
|
89 |
+
bot_messages.append(message)
|
90 |
+
else:
|
91 |
+
customer_messages.append(message)
|
92 |
+
|
93 |
+
bot_conversation = " ".join(bot_messages)
|
94 |
+
customer_conversation = " ".join(customer_messages)
|
95 |
+
|
96 |
+
return bot_conversation, customer_conversation
|
97 |
+
|
98 |
+
def generate_convo_summary():
|
99 |
+
global convo_history
|
100 |
+
summary=summarizer.generate_summary(convo_history)
|
101 |
+
return summary
|
102 |
+
|
103 |
+
def sentiment_analysis():
|
104 |
+
global convo_history
|
105 |
+
bot_conversation, customer_conversation = history_of_both(convo_history)
|
106 |
+
customer_conversation_sentiment_scores = sentiment.analyze_sentiment(customer_conversation)
|
107 |
+
bot_conversation_sentiment_scores = sentiment.analyze_sentiment(bot_conversation)
|
108 |
+
return "Sentiment Scores for customer_conversation:\n"+customer_conversation_sentiment_scores+"\nSentiment Scores for sales_agent_conversation:\n"+bot_conversation_sentiment_scores
|
109 |
+
|
110 |
+
def emotion_analysis():
|
111 |
+
global convo_history,bot_conversation,customer_conversation
|
112 |
+
bot_conversation, customer_conversation = history_of_both(convo_history)
|
113 |
+
customer_emotion=sentiment.emotion_analysis(customer_conversation)
|
114 |
+
bot_emotion=sentiment.emotion_analysis(bot_conversation)
|
115 |
+
return "Emotions for customer_conversation:\n"+customer_emotion+"\nEmotions for sales_agent_conversation:\n"+bot_emotion
|
116 |
+
|
117 |
+
with gr.Blocks(theme="Taithrah/Minimal") as demo:
|
118 |
+
gr.HTML("""<center><h1>Sales Persona Chatbot</h1></center>""")
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
chatbot = gr.Chatbot()
|
123 |
+
with gr.Column():
|
124 |
+
show_stages = gr.Textbox(label="Stages",lines=18,container=False)
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column(scale=0.70):
|
127 |
+
msg = gr.Textbox(show_label=False,container=False)
|
128 |
+
with gr.Column(scale=0.30):
|
129 |
+
clear = gr.Button("Clear")
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column(scale=0.50):
|
132 |
+
with gr.Row():
|
133 |
+
gen_report_view = gr.Textbox(label="Generated Report",container=False)
|
134 |
+
with gr.Row():
|
135 |
+
gen_report_btn = gr.Button("Generate Report")
|
136 |
+
report_down_btn = gr.DownloadButton(label="Download Report",value="report.txt")
|
137 |
+
with gr.Column(scale=0.50):
|
138 |
+
with gr.Row():
|
139 |
+
summary_view = gr.Textbox(label="Summary",container=False)
|
140 |
+
with gr.Row():
|
141 |
+
summary_btn = gr.Button("Generate Summary")
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column(scale=0.50):
|
144 |
+
with gr.Row():
|
145 |
+
sentiment_view = gr.Textbox(label="Sentiment",container=False)
|
146 |
+
with gr.Row():
|
147 |
+
sentiment_btn = gr.Button("Sentiment")
|
148 |
+
with gr.Column(scale=0.50):
|
149 |
+
with gr.Row():
|
150 |
+
emotion_view = gr.Textbox(label="Emotion",container=False)
|
151 |
+
with gr.Row():
|
152 |
+
emotion_btn = gr.Button("Emotion")
|
153 |
+
|
154 |
+
|
155 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
156 |
+
bot, chatbot, chatbot
|
157 |
+
)
|
158 |
+
msg.submit(stages,[],show_stages)
|
159 |
+
gen_report_btn.click(download_report,[],gen_report_view,queue=False)
|
160 |
+
summary_btn.click(generate_convo_summary,[],summary_view)
|
161 |
+
sentiment_btn.click(sentiment_analysis,[],sentiment_view)
|
162 |
+
emotion_btn.click(emotion_analysis,[],emotion_view)
|
163 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
164 |
+
clear.click(lambda: None, None, show_stages, queue=False)
|
165 |
+
|
166 |
+
demo.queue()
|
167 |
+
demo.launch()
|