Spaces:
Running
on
Zero
Running
on
Zero
update the app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,14 @@ import gradio as gr
|
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
import torchaudio
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load model and processor
|
7 |
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
8 |
model = WhisperForConditionalGeneration.from_pretrained("aiola/whisper-ner-v1")
|
9 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
model = model.to(device)
|
11 |
|
12 |
def unify_ner_text(text, symbols_to_replace=("/", " ", ":", "_")):
|
@@ -16,7 +19,7 @@ def unify_ner_text(text, symbols_to_replace=("/", " ", ":", "_")):
|
|
16 |
text = text.replace(symbol, "-")
|
17 |
return text.lower()
|
18 |
|
19 |
-
|
20 |
def transcribe_and_recognize_entities(audio_file, prompt):
|
21 |
target_sample_rate = 16000
|
22 |
signal, sampling_rate = torchaudio.load(audio_file)
|
@@ -25,12 +28,9 @@ def transcribe_and_recognize_entities(audio_file, prompt):
|
|
25 |
if signal.ndim == 2:
|
26 |
signal = torch.mean(signal, dim=0)
|
27 |
|
28 |
-
signal = signal.cpu() # Ensure signal is on CPU for processing
|
29 |
input_features = processor(signal, sampling_rate=target_sample_rate, return_tensors="pt").input_features
|
30 |
input_features = input_features.to(device)
|
31 |
|
32 |
-
|
33 |
-
# Split the prompt into individual NER types and process each one
|
34 |
ner_types = prompt.split(',')
|
35 |
processed_ner_types = [unify_ner_text(ner_type.strip()) for ner_type in ner_types]
|
36 |
prompt = ", ".join(processed_ner_types)
|
@@ -43,31 +43,21 @@ def transcribe_and_recognize_entities(audio_file, prompt):
|
|
43 |
input_features,
|
44 |
max_new_tokens=256,
|
45 |
prompt_ids=prompt_ids,
|
46 |
-
language='en',
|
47 |
generation_config=model.generation_config,
|
48 |
)
|
49 |
-
# slice only the output without the prompt itself at the start.
|
50 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
51 |
-
|
52 |
-
# Determine the length of the prompt in the transcription
|
53 |
prompt_length_in_transcription = len(prompt)
|
54 |
-
|
55 |
-
# Slice the transcription to remove the prompt itself from the output
|
56 |
-
transcription = transcription[prompt_length_in_transcription + 1:]
|
57 |
|
58 |
return transcription
|
59 |
|
60 |
-
# Define Gradio interface
|
61 |
iface = gr.Interface(
|
62 |
fn=transcribe_and_recognize_entities,
|
63 |
-
inputs=[
|
64 |
-
gr.Audio(label="Upload Audio", type="filepath"),
|
65 |
-
gr.Textbox(label="Entity Recognition Prompt"),
|
66 |
-
],
|
67 |
outputs=gr.Textbox(label="Transcription and Entities"),
|
68 |
title="Whisper-NER Demo",
|
69 |
description="Upload an audio file and enter entities to identify. The model will transcribe the audio and recognize entities."
|
70 |
)
|
71 |
|
72 |
-
# iface.launch()
|
73 |
iface.launch(share=True)
|
|
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
# Initialize devices
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
# Load model and processor
|
11 |
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
12 |
model = WhisperForConditionalGeneration.from_pretrained("aiola/whisper-ner-v1")
|
|
|
13 |
model = model.to(device)
|
14 |
|
15 |
def unify_ner_text(text, symbols_to_replace=("/", " ", ":", "_")):
|
|
|
19 |
text = text.replace(symbol, "-")
|
20 |
return text.lower()
|
21 |
|
22 |
+
@spaces.GPU # This decorator ensures your function can use GPU on Hugging Face Spaces
|
23 |
def transcribe_and_recognize_entities(audio_file, prompt):
|
24 |
target_sample_rate = 16000
|
25 |
signal, sampling_rate = torchaudio.load(audio_file)
|
|
|
28 |
if signal.ndim == 2:
|
29 |
signal = torch.mean(signal, dim=0)
|
30 |
|
|
|
31 |
input_features = processor(signal, sampling_rate=target_sample_rate, return_tensors="pt").input_features
|
32 |
input_features = input_features.to(device)
|
33 |
|
|
|
|
|
34 |
ner_types = prompt.split(',')
|
35 |
processed_ner_types = [unify_ner_text(ner_type.strip()) for ner_type in ner_types]
|
36 |
prompt = ", ".join(processed_ner_types)
|
|
|
43 |
input_features,
|
44 |
max_new_tokens=256,
|
45 |
prompt_ids=prompt_ids,
|
46 |
+
language='en',
|
47 |
generation_config=model.generation_config,
|
48 |
)
|
|
|
49 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
|
|
|
|
50 |
prompt_length_in_transcription = len(prompt)
|
51 |
+
transcription = transcription[prompt_length_in_transcription + 1:] # Remove the prompt
|
|
|
|
|
52 |
|
53 |
return transcription
|
54 |
|
|
|
55 |
iface = gr.Interface(
|
56 |
fn=transcribe_and_recognize_entities,
|
57 |
+
inputs=[gr.Audio(label="Upload Audio", type="filepath"), gr.Textbox(label="Entity Recognition Prompt")],
|
|
|
|
|
|
|
58 |
outputs=gr.Textbox(label="Transcription and Entities"),
|
59 |
title="Whisper-NER Demo",
|
60 |
description="Upload an audio file and enter entities to identify. The model will transcribe the audio and recognize entities."
|
61 |
)
|
62 |
|
|
|
63 |
iface.launch(share=True)
|