Commit
·
ab45a22
1
Parent(s):
acd572a
Finalized predictor script
Browse files
notebooks/protac_degradation_predictor.py
CHANGED
@@ -1,19 +1,20 @@
|
|
1 |
-
import optuna
|
2 |
-
from optuna.samplers import TPESampler
|
3 |
-
import h5py
|
4 |
import os
|
5 |
import pickle
|
6 |
import warnings
|
7 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import pandas as pd
|
9 |
import numpy as np
|
10 |
-
import urllib.request
|
11 |
|
12 |
from rdkit import Chem
|
13 |
from rdkit.Chem import AllChem
|
14 |
from rdkit import DataStructs
|
15 |
-
from collections import defaultdict
|
16 |
-
from typing import Literal
|
17 |
from jsonargparse import CLI
|
18 |
from tqdm.auto import tqdm
|
19 |
from imblearn.over_sampling import SMOTE, ADASYN
|
@@ -44,25 +45,39 @@ warnings.filterwarnings("ignore", ".*FixedLocator*")
|
|
44 |
# Ignore UserWarning from PyTorch Lightning
|
45 |
warnings.filterwarnings("ignore", ".*does not have many workers.*")
|
46 |
|
47 |
-
|
48 |
protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
|
49 |
-
protac_df.head()
|
50 |
-
|
51 |
-
# Get the unique Article IDs of the entries with NaN values in the Active column
|
52 |
-
nan_active = protac_df[protac_df['Active'].isna()]['Article DOI'].unique()
|
53 |
-
nan_active
|
54 |
|
55 |
# Map E3 Ligase Iap to IAP
|
56 |
protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# ## Load Protein Embeddings
|
68 |
|
@@ -101,9 +116,10 @@ for cell_line in protac_df['Cell Line Identifier'].unique():
|
|
101 |
cell2embedding[cell_line] = np.zeros(emb_shape)
|
102 |
|
103 |
## Precompute Molecular Fingerprints
|
|
|
104 |
morgan_fpgen = AllChem.GetMorganGenerator(
|
105 |
radius=15,
|
106 |
-
fpSize=
|
107 |
includeChirality=True,
|
108 |
)
|
109 |
|
@@ -131,7 +147,7 @@ print(f'Number of overlapping SMILES in protac_df: {len(protac_df[protac_df["Smi
|
|
131 |
tanimoto_matrix = defaultdict(list)
|
132 |
for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
|
133 |
fp1 = smiles2fp[smiles1]
|
134 |
-
# TODO: Use BulkTanimotoSimilarity
|
135 |
for j, smiles2 in enumerate(protac_df['Smiles'].unique()):
|
136 |
if j < i:
|
137 |
continue
|
@@ -153,7 +169,8 @@ class PROTAC_Dataset(Dataset):
|
|
153 |
smiles2fp=smiles2fp,
|
154 |
use_smote=False,
|
155 |
oversampler=None,
|
156 |
-
|
|
|
157 |
):
|
158 |
""" Initialize the PROTAC dataset
|
159 |
|
@@ -165,11 +182,13 @@ class PROTAC_Dataset(Dataset):
|
|
165 |
use_smote (bool): Whether to use SMOTE for oversampling
|
166 |
use_ored_activity (bool): Whether to use the 'Active - OR' column
|
167 |
"""
|
168 |
-
# Filter out examples with NaN in
|
169 |
-
self.data = protac_df # [~protac_df[
|
170 |
self.protein_embeddings = protein_embeddings
|
171 |
self.cell2embedding = cell2embedding
|
172 |
self.smiles2fp = smiles2fp
|
|
|
|
|
173 |
|
174 |
self.smiles_emb_dim = smiles2fp[list(smiles2fp.keys())[0]].shape[0]
|
175 |
self.protein_emb_dim = protein_embeddings[list(
|
@@ -177,11 +196,18 @@ class PROTAC_Dataset(Dataset):
|
|
177 |
self.cell_emb_dim = cell2embedding[list(
|
178 |
cell2embedding.keys())[0]].shape[0]
|
179 |
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
|
|
182 |
self.use_smote = use_smote
|
183 |
self.oversampler = oversampler
|
184 |
-
# Apply SMOTE
|
185 |
if self.use_smote:
|
186 |
self.apply_smote()
|
187 |
|
@@ -190,15 +216,11 @@ class PROTAC_Dataset(Dataset):
|
|
190 |
features = []
|
191 |
labels = []
|
192 |
for _, row in self.data.iterrows():
|
193 |
-
smiles_emb = smiles2fp[row['Smiles']]
|
194 |
-
poi_emb = protein_embeddings[row['Uniprot']]
|
195 |
-
e3_emb = protein_embeddings[row['E3 Ligase Uniprot']]
|
196 |
-
cell_emb = cell2embedding[row['Cell Line Identifier']]
|
197 |
features.append(np.hstack([
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
]))
|
203 |
labels.append(row[self.active_label])
|
204 |
|
@@ -231,27 +253,74 @@ class PROTAC_Dataset(Dataset):
|
|
231 |
})
|
232 |
self.data = df_smote
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
def __len__(self):
|
235 |
return len(self.data)
|
236 |
|
237 |
def __getitem__(self, idx):
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
'active': self.data[self.active_label].iloc[idx],
|
246 |
-
}
|
247 |
-
else:
|
248 |
-
elem = {
|
249 |
-
'smiles_emb': self.smiles2fp[self.data['Smiles'].iloc[idx]].astype(np.float32),
|
250 |
-
'poi_emb': self.protein_embeddings[self.data['Uniprot'].iloc[idx]].astype(np.float32),
|
251 |
-
'e3_emb': self.protein_embeddings[self.data['E3 Ligase Uniprot'].iloc[idx]].astype(np.float32),
|
252 |
-
'cell_emb': self.cell2embedding[self.data['Cell Line Identifier'].iloc[idx]].astype(np.float32),
|
253 |
-
'active': 1. if self.data[self.active_label].iloc[idx] else 0.,
|
254 |
-
}
|
255 |
return elem
|
256 |
|
257 |
|
@@ -260,18 +329,19 @@ class PROTAC_Model(pl.LightningModule):
|
|
260 |
def __init__(
|
261 |
self,
|
262 |
hidden_dim: int,
|
263 |
-
smiles_emb_dim: int =
|
264 |
poi_emb_dim: int = 1024,
|
265 |
e3_emb_dim: int = 1024,
|
266 |
cell_emb_dim: int = 768,
|
267 |
batch_size: int = 32,
|
268 |
learning_rate: float = 1e-3,
|
269 |
dropout: float = 0.2,
|
270 |
-
join_embeddings: Literal['concat', 'sum'] = 'concat',
|
271 |
train_dataset: PROTAC_Dataset = None,
|
272 |
val_dataset: PROTAC_Dataset = None,
|
273 |
test_dataset: PROTAC_Dataset = None,
|
274 |
disabled_embeddings: list = [],
|
|
|
275 |
):
|
276 |
super().__init__()
|
277 |
self.poi_emb_dim = poi_emb_dim
|
@@ -286,6 +356,7 @@ class PROTAC_Model(pl.LightningModule):
|
|
286 |
self.val_dataset = val_dataset
|
287 |
self.test_dataset = test_dataset
|
288 |
self.disabled_embeddings = disabled_embeddings
|
|
|
289 |
# Set our init args as class attributes
|
290 |
self.__dict__.update(locals()) # Add arguments as attributes
|
291 |
# Save the arguments passed to init
|
@@ -296,19 +367,29 @@ class PROTAC_Model(pl.LightningModule):
|
|
296 |
]
|
297 |
self.save_hyperparameters(ignore=ignore_args_as_hyperparams)
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
joint_dim = hidden_dim * (4 - len(self.disabled_embeddings))
|
310 |
elif self.join_embeddings == 'sum':
|
311 |
joint_dim = hidden_dim
|
|
|
|
|
312 |
self.fc1 = nn.Linear(joint_dim, hidden_dim)
|
313 |
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
314 |
self.fc3 = nn.Linear(hidden_dim, 1)
|
@@ -333,25 +414,46 @@ class PROTAC_Model(pl.LightningModule):
|
|
333 |
model = {1}.load_from_checkpoint('checkpoint.ckpt')
|
334 |
model.{0} = my_{0}
|
335 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
def forward(self, poi_emb, e3_emb, cell_emb, smiles_emb):
|
338 |
embeddings = []
|
339 |
-
if '
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
x = torch.cat(embeddings, dim=1)
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
x = self.dropout(F.relu(self.fc1(x)))
|
356 |
x = self.dropout(F.relu(self.fc2(x)))
|
357 |
x = self.fc3(x)
|
@@ -391,6 +493,25 @@ class PROTAC_Model(pl.LightningModule):
|
|
391 |
cell_emb = batch['cell_emb']
|
392 |
smiles_emb = batch['smiles_emb']
|
393 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
|
395 |
return torch.sigmoid(y_hat)
|
396 |
|
@@ -398,6 +519,7 @@ class PROTAC_Model(pl.LightningModule):
|
|
398 |
if self.train_dataset is None:
|
399 |
format = 'train_dataset', self.__class__.__name__
|
400 |
raise ValueError(self.missing_dataset_error.format(*format))
|
|
|
401 |
return DataLoader(
|
402 |
self.train_dataset,
|
403 |
batch_size=self.batch_size,
|
@@ -425,23 +547,25 @@ class PROTAC_Model(pl.LightningModule):
|
|
425 |
shuffle=False,
|
426 |
)
|
427 |
|
428 |
-
|
429 |
def train_model(
|
430 |
-
train_df,
|
431 |
-
val_df,
|
432 |
-
test_df=None,
|
433 |
-
hidden_dim=768,
|
434 |
-
batch_size=8,
|
435 |
-
learning_rate=2e-5,
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
|
|
|
|
|
|
445 |
) -> tuple:
|
446 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
447 |
|
@@ -455,7 +579,6 @@ def train_model(
|
|
455 |
max_epochs (int): The maximum number of epochs.
|
456 |
smiles_emb_dim (int): The dimension of the SMILES embeddings.
|
457 |
smote_k_neighbors (int): The number of neighbors for the SMOTE oversampler.
|
458 |
-
use_ored_activity (bool): Whether to use the ORED activity column, i.e., "Active - OR" column.
|
459 |
fast_dev_run (bool): Whether to run a fast development run.
|
460 |
disabled_embeddings (list): The list of disabled embeddings.
|
461 |
|
@@ -468,16 +591,16 @@ def train_model(
|
|
468 |
protein_embeddings,
|
469 |
cell2embedding,
|
470 |
smiles2fp,
|
471 |
-
use_smote=
|
472 |
-
oversampler=oversampler,
|
473 |
-
|
474 |
)
|
475 |
val_ds = PROTAC_Dataset(
|
476 |
val_df,
|
477 |
protein_embeddings,
|
478 |
cell2embedding,
|
479 |
smiles2fp,
|
480 |
-
|
481 |
)
|
482 |
if test_df is not None:
|
483 |
test_ds = PROTAC_Dataset(
|
@@ -485,7 +608,7 @@ def train_model(
|
|
485 |
protein_embeddings,
|
486 |
cell2embedding,
|
487 |
smiles2fp,
|
488 |
-
|
489 |
)
|
490 |
logger = pl.loggers.TensorBoardLogger(
|
491 |
save_dir='../logs',
|
@@ -495,6 +618,18 @@ def train_model(
|
|
495 |
pl.callbacks.EarlyStopping(
|
496 |
monitor='train_loss',
|
497 |
patience=10,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
mode='max',
|
499 |
verbose=True,
|
500 |
),
|
@@ -514,6 +649,8 @@ def train_model(
|
|
514 |
enable_model_summary=False,
|
515 |
enable_checkpointing=False,
|
516 |
enable_progress_bar=False,
|
|
|
|
|
517 |
)
|
518 |
model = PROTAC_Model(
|
519 |
hidden_dim=hidden_dim,
|
@@ -522,8 +659,10 @@ def train_model(
|
|
522 |
e3_emb_dim=1024,
|
523 |
cell_emb_dim=768,
|
524 |
batch_size=batch_size,
|
525 |
-
learning_rate=learning_rate,
|
526 |
join_embeddings=join_embeddings,
|
|
|
|
|
|
|
527 |
train_dataset=train_ds,
|
528 |
val_dataset=val_ds,
|
529 |
test_dataset=test_ds if test_df is not None else None,
|
@@ -541,25 +680,42 @@ def train_model(
|
|
541 |
# Setup hyperparameter optimization:
|
542 |
|
543 |
def objective(
|
544 |
-
trial,
|
545 |
-
train_df,
|
546 |
-
val_df,
|
547 |
-
hidden_dim_options,
|
548 |
-
batch_size_options,
|
549 |
-
learning_rate_options,
|
550 |
-
|
551 |
-
|
552 |
-
fast_dev_run=False,
|
553 |
-
|
554 |
-
disabled_embeddings=[],
|
555 |
) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
# Generate the hyperparameters
|
557 |
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
|
558 |
batch_size = trial.suggest_categorical('batch_size', batch_size_options)
|
559 |
learning_rate = trial.suggest_float('learning_rate', *learning_rate_options, log=True)
|
560 |
-
|
561 |
-
join_embeddings = trial.suggest_categorical('join_embeddings', ['concat', 'sum'])
|
562 |
smote_k_neighbors = trial.suggest_categorical('smote_k_neighbors', smote_k_neighbors_options)
|
|
|
|
|
|
|
563 |
|
564 |
# Train the model with the current set of hyperparameters
|
565 |
_, _, metrics = train_model(
|
@@ -569,11 +725,14 @@ def objective(
|
|
569 |
batch_size=batch_size,
|
570 |
join_embeddings=join_embeddings,
|
571 |
learning_rate=learning_rate,
|
572 |
-
|
|
|
573 |
smote_k_neighbors=smote_k_neighbors,
|
|
|
|
|
574 |
use_logger=False,
|
575 |
fast_dev_run=fast_dev_run,
|
576 |
-
|
577 |
disabled_embeddings=disabled_embeddings,
|
578 |
)
|
579 |
|
@@ -587,14 +746,14 @@ def objective(
|
|
587 |
|
588 |
|
589 |
def hyperparameter_tuning_and_training(
|
590 |
-
train_df,
|
591 |
-
val_df,
|
592 |
-
test_df,
|
593 |
-
fast_dev_run=False,
|
594 |
-
n_trials=
|
595 |
-
logger_name='protac_hparam_search',
|
596 |
-
|
597 |
-
disabled_embeddings=[],
|
598 |
) -> tuple:
|
599 |
""" Hyperparameter tuning and training of a PROTAC model.
|
600 |
|
@@ -603,6 +762,10 @@ def hyperparameter_tuning_and_training(
|
|
603 |
val_df (pd.DataFrame): The validation set.
|
604 |
test_df (pd.DataFrame): The test set.
|
605 |
fast_dev_run (bool): Whether to run a fast development run.
|
|
|
|
|
|
|
|
|
606 |
|
607 |
Returns:
|
608 |
tuple: The trained model, the trainer, and the best metrics.
|
@@ -611,7 +774,6 @@ def hyperparameter_tuning_and_training(
|
|
611 |
hidden_dim_options = [256, 512, 768]
|
612 |
batch_size_options = [8, 16, 32]
|
613 |
learning_rate_options = (1e-5, 1e-3) # min and max values for loguniform distribution
|
614 |
-
max_epochs_options = [10, 20, 50]
|
615 |
smote_k_neighbors_options = list(range(3, 16))
|
616 |
|
617 |
# Set the verbosity of Optuna
|
@@ -624,13 +786,12 @@ def hyperparameter_tuning_and_training(
|
|
624 |
trial,
|
625 |
train_df,
|
626 |
val_df,
|
627 |
-
hidden_dim_options,
|
628 |
-
batch_size_options,
|
629 |
-
learning_rate_options,
|
630 |
-
max_epochs_options,
|
631 |
smote_k_neighbors_options=smote_k_neighbors_options,
|
632 |
fast_dev_run=fast_dev_run,
|
633 |
-
|
634 |
disabled_embeddings=disabled_embeddings,
|
635 |
),
|
636 |
n_trials=n_trials,
|
@@ -644,7 +805,7 @@ def hyperparameter_tuning_and_training(
|
|
644 |
use_logger=True,
|
645 |
logger_name=logger_name,
|
646 |
fast_dev_run=fast_dev_run,
|
647 |
-
|
648 |
disabled_embeddings=disabled_embeddings,
|
649 |
**study.best_params,
|
650 |
)
|
@@ -657,10 +818,11 @@ def hyperparameter_tuning_and_training(
|
|
657 |
|
658 |
|
659 |
def main(
|
660 |
-
|
661 |
n_trials: int = 50,
|
662 |
-
n_splits: int = 5,
|
663 |
fast_dev_run: bool = False,
|
|
|
|
|
664 |
):
|
665 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
666 |
|
@@ -671,101 +833,178 @@ def main(
|
|
671 |
fast_dev_run (bool): Whether to run a fast development run.
|
672 |
"""
|
673 |
## Set the Column to Predict
|
674 |
-
|
675 |
-
active_name = active_col.replace(' ', '').lower()
|
676 |
-
active_name = 'active-and' if active_name == 'active' else active_name
|
677 |
-
|
678 |
-
## Test Sets
|
679 |
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
# * its Uniprot appears only once in the dataframe
|
684 |
-
# * its (Smiles, Uniprot) pair appears only once in the dataframe
|
685 |
-
unique_smiles = active_df['Smiles'].value_counts() == 1
|
686 |
-
unique_uniprot = active_df['Uniprot'].value_counts() == 1
|
687 |
-
unique_smiles_uniprot = active_df.groupby(['Smiles', 'Uniprot']).size() == 1
|
688 |
-
|
689 |
-
# Get the indices of the unique samples
|
690 |
-
unique_smiles_idx = active_df['Smiles'].map(unique_smiles)
|
691 |
-
unique_uniprot_idx = active_df['Uniprot'].map(unique_uniprot)
|
692 |
-
unique_smiles_uniprot_idx = active_df.set_index(['Smiles', 'Uniprot']).index.map(unique_smiles_uniprot)
|
693 |
-
|
694 |
-
# Cross the indices to get the unique samples
|
695 |
-
unique_samples = active_df[unique_smiles_idx & unique_uniprot_idx & unique_smiles_uniprot_idx].index
|
696 |
-
test_df = active_df.loc[unique_samples]
|
697 |
-
train_val_df = active_df[~active_df.index.isin(unique_samples)]
|
698 |
|
699 |
-
|
|
|
|
|
700 |
|
701 |
-
|
702 |
-
#
|
703 |
-
# * Random split
|
704 |
-
# * POI-wise: some POIs never in both splits
|
705 |
-
# * Least Tanimoto similarity PROTAC-wise
|
706 |
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
|
|
|
|
|
712 |
# Make directory ../reports if it does not exist
|
713 |
if not os.path.exists('../reports'):
|
714 |
os.makedirs('../reports')
|
715 |
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
kf = StratifiedGroupKFold(n_splits=
|
732 |
-
|
733 |
-
groups = encoder.fit_transform(train_val_df['Uniprot'].values.reshape(-1, 1))
|
734 |
-
elif group_type == 'tanimoto':
|
735 |
-
# Split by tanimoto similarity, i.e., group_type PROTACs with similar Avg Tanimoto
|
736 |
-
kf = StratifiedGroupKFold(n_splits=n_splits, shuffle=True, random_state=42)
|
737 |
-
tanimoto_groups = pd.cut(train_val_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
|
738 |
-
encoder = OrdinalEncoder()
|
739 |
-
groups = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1))
|
740 |
# Start the CV over the folds
|
741 |
X = train_val_df.drop(columns=active_col)
|
742 |
y = train_val_df[active_col].tolist()
|
743 |
-
|
|
|
744 |
print('-' * 100)
|
745 |
-
print(f'Starting CV for group type: {
|
746 |
print('-' * 100)
|
747 |
train_df = train_val_df.iloc[train_index]
|
748 |
val_df = train_val_df.iloc[val_index]
|
|
|
|
|
|
|
|
|
749 |
stats = {
|
750 |
'fold': k,
|
751 |
-
'group_type': group_type,
|
752 |
'train_len': len(train_df),
|
753 |
'val_len': len(val_df),
|
754 |
'train_perc': len(train_df) / len(train_val_df),
|
755 |
'val_perc': len(val_df) / len(train_val_df),
|
756 |
-
'
|
757 |
-
'
|
758 |
-
'
|
759 |
-
'
|
760 |
-
'
|
761 |
-
'
|
762 |
-
'
|
763 |
-
'
|
764 |
-
'disabled_embeddings': np.nan,
|
765 |
}
|
766 |
-
if
|
767 |
-
stats['train_unique_groups'] = len(np.unique(
|
768 |
-
stats['val_unique_groups'] = len(np.unique(
|
|
|
|
|
769 |
# Train and evaluate the model
|
770 |
model, trainer, metrics = hyperparameter_tuning_and_training(
|
771 |
train_df,
|
@@ -773,8 +1012,8 @@ def main(
|
|
773 |
test_df,
|
774 |
fast_dev_run=fast_dev_run,
|
775 |
n_trials=n_trials,
|
776 |
-
logger_name=f'protac_{active_name}_{
|
777 |
-
|
778 |
)
|
779 |
hparams = {p.strip('hparam_'): v for p, v in stats.items() if p.startswith('hparam_')}
|
780 |
stats.update(metrics)
|
@@ -793,8 +1032,8 @@ def main(
|
|
793 |
val_df,
|
794 |
test_df,
|
795 |
fast_dev_run=fast_dev_run,
|
796 |
-
logger_name=f'protac_{active_name}_{
|
797 |
-
|
798 |
disabled_embeddings=disabled_embeddings,
|
799 |
**hparams,
|
800 |
)
|
@@ -803,11 +1042,11 @@ def main(
|
|
803 |
del model
|
804 |
del trainer
|
805 |
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
|
812 |
|
813 |
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import pickle
|
3 |
import warnings
|
4 |
import logging
|
5 |
+
from collections import defaultdict
|
6 |
+
from typing import Literal, List, Tuple, Optional
|
7 |
+
import urllib.request
|
8 |
+
|
9 |
+
import optuna
|
10 |
+
from optuna.samplers import TPESampler
|
11 |
+
import h5py
|
12 |
import pandas as pd
|
13 |
import numpy as np
|
|
|
14 |
|
15 |
from rdkit import Chem
|
16 |
from rdkit.Chem import AllChem
|
17 |
from rdkit import DataStructs
|
|
|
|
|
18 |
from jsonargparse import CLI
|
19 |
from tqdm.auto import tqdm
|
20 |
from imblearn.over_sampling import SMOTE, ADASYN
|
|
|
45 |
# Ignore UserWarning from PyTorch Lightning
|
46 |
warnings.filterwarnings("ignore", ".*does not have many workers.*")
|
47 |
|
|
|
48 |
protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Map E3 Ligase Iap to IAP
|
51 |
protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
|
52 |
|
53 |
+
def is_active(DC50: float, Dmax: float, oring=False, pDC50_threshold=7.0, Dmax_threshold=0.8) -> bool:
|
54 |
+
""" Check if a PROTAC is active based on DC50 and Dmax.
|
55 |
+
Args:
|
56 |
+
DC50(float): DC50 in nM
|
57 |
+
Dmax(float): Dmax in %
|
58 |
+
Returns:
|
59 |
+
bool: True if active, False if inactive, np.nan if either DC50 or Dmax is NaN
|
60 |
+
"""
|
61 |
+
pDC50 = -np.log10(DC50 * 1e-9) if pd.notnull(DC50) else np.nan
|
62 |
+
Dmax = Dmax / 100
|
63 |
+
if pd.notnull(pDC50):
|
64 |
+
if pDC50 < pDC50_threshold:
|
65 |
+
return False
|
66 |
+
if pd.notnull(Dmax):
|
67 |
+
if Dmax < Dmax_threshold:
|
68 |
+
return False
|
69 |
+
if oring:
|
70 |
+
if pd.notnull(pDC50):
|
71 |
+
return True if pDC50 >= pDC50_threshold else False
|
72 |
+
elif pd.notnull(Dmax):
|
73 |
+
return True if Dmax >= Dmax_threshold else False
|
74 |
+
else:
|
75 |
+
return np.nan
|
76 |
+
else:
|
77 |
+
if pd.notnull(pDC50) and pd.notnull(Dmax):
|
78 |
+
return True if pDC50 >= pDC50_threshold and Dmax >= Dmax_threshold else False
|
79 |
+
else:
|
80 |
+
return np.nan
|
81 |
|
82 |
# ## Load Protein Embeddings
|
83 |
|
|
|
116 |
cell2embedding[cell_line] = np.zeros(emb_shape)
|
117 |
|
118 |
## Precompute Molecular Fingerprints
|
119 |
+
fingerprint_size = 224
|
120 |
morgan_fpgen = AllChem.GetMorganGenerator(
|
121 |
radius=15,
|
122 |
+
fpSize=fingerprint_size,
|
123 |
includeChirality=True,
|
124 |
)
|
125 |
|
|
|
147 |
tanimoto_matrix = defaultdict(list)
|
148 |
for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
|
149 |
fp1 = smiles2fp[smiles1]
|
150 |
+
# TODO: Use BulkTanimotoSimilarity for better performance
|
151 |
for j, smiles2 in enumerate(protac_df['Smiles'].unique()):
|
152 |
if j < i:
|
153 |
continue
|
|
|
169 |
smiles2fp=smiles2fp,
|
170 |
use_smote=False,
|
171 |
oversampler=None,
|
172 |
+
active_label='Active',
|
173 |
+
include_mol_graphs=False,
|
174 |
):
|
175 |
""" Initialize the PROTAC dataset
|
176 |
|
|
|
182 |
use_smote (bool): Whether to use SMOTE for oversampling
|
183 |
use_ored_activity (bool): Whether to use the 'Active - OR' column
|
184 |
"""
|
185 |
+
# Filter out examples with NaN in active_col column
|
186 |
+
self.data = protac_df # [~protac_df[active_col].isna()]
|
187 |
self.protein_embeddings = protein_embeddings
|
188 |
self.cell2embedding = cell2embedding
|
189 |
self.smiles2fp = smiles2fp
|
190 |
+
self.active_label = active_label
|
191 |
+
self.include_mol_graphs = include_mol_graphs
|
192 |
|
193 |
self.smiles_emb_dim = smiles2fp[list(smiles2fp.keys())[0]].shape[0]
|
194 |
self.protein_emb_dim = protein_embeddings[list(
|
|
|
196 |
self.cell_emb_dim = cell2embedding[list(
|
197 |
cell2embedding.keys())[0]].shape[0]
|
198 |
|
199 |
+
# Look up the embeddings
|
200 |
+
self.data = pd.DataFrame({
|
201 |
+
'Smiles': self.data['Smiles'].apply(lambda x: smiles2fp[x].astype(np.float32)).tolist(),
|
202 |
+
'Uniprot': self.data['Uniprot'].apply(lambda x: protein_embeddings[x].astype(np.float32)).tolist(),
|
203 |
+
'E3 Ligase Uniprot': self.data['E3 Ligase Uniprot'].apply(lambda x: protein_embeddings[x].astype(np.float32)).tolist(),
|
204 |
+
'Cell Line Identifier': self.data['Cell Line Identifier'].apply(lambda x: cell2embedding[x].astype(np.float32)).tolist(),
|
205 |
+
self.active_label: self.data[self.active_label].astype(np.float32).tolist(),
|
206 |
+
})
|
207 |
|
208 |
+
# Apply SMOTE
|
209 |
self.use_smote = use_smote
|
210 |
self.oversampler = oversampler
|
|
|
211 |
if self.use_smote:
|
212 |
self.apply_smote()
|
213 |
|
|
|
216 |
features = []
|
217 |
labels = []
|
218 |
for _, row in self.data.iterrows():
|
|
|
|
|
|
|
|
|
219 |
features.append(np.hstack([
|
220 |
+
row['Smiles'],
|
221 |
+
row['Uniprot'],
|
222 |
+
row['E3 Ligase Uniprot'],
|
223 |
+
row['Cell Line Identifier'],
|
224 |
]))
|
225 |
labels.append(row[self.active_label])
|
226 |
|
|
|
253 |
})
|
254 |
self.data = df_smote
|
255 |
|
256 |
+
def fit_scaling(self, use_single_scaler=False, **scaler_kwargs) -> dict:
|
257 |
+
""" Fit the scalers for the data.
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
dict: The fitted scalers.
|
261 |
+
"""
|
262 |
+
if use_single_scaler:
|
263 |
+
scaler = StandardScaler(**scaler_kwargs)
|
264 |
+
embeddings = np.hstack([
|
265 |
+
np.array(self.data['Smiles'].tolist()),
|
266 |
+
np.array(self.data['Uniprot'].tolist()),
|
267 |
+
np.array(self.data['E3 Ligase Uniprot'].tolist()),
|
268 |
+
np.array(self.data['Cell Line Identifier'].tolist()),
|
269 |
+
])
|
270 |
+
scaler.fit(embeddings)
|
271 |
+
return scaler
|
272 |
+
else:
|
273 |
+
scalers = {}
|
274 |
+
scalers['Smiles'] = StandardScaler(**scaler_kwargs)
|
275 |
+
scalers['Uniprot'] = StandardScaler(**scaler_kwargs)
|
276 |
+
scalers['E3 Ligase Uniprot'] = StandardScaler(**scaler_kwargs)
|
277 |
+
scalers['Cell Line Identifier'] = StandardScaler(**scaler_kwargs)
|
278 |
+
|
279 |
+
scalers['Smiles'].fit(np.stack(self.data['Smiles'].to_numpy()))
|
280 |
+
scalers['Uniprot'].fit(np.stack(self.data['Uniprot'].to_numpy()))
|
281 |
+
scalers['E3 Ligase Uniprot'].fit(np.stack(self.data['E3 Ligase Uniprot'].to_numpy()))
|
282 |
+
scalers['Cell Line Identifier'].fit(np.stack(self.data['Cell Line Identifier'].to_numpy()))
|
283 |
+
|
284 |
+
return scalers
|
285 |
+
|
286 |
+
def apply_scaling(self, scalers: dict, use_single_scaler=False):
|
287 |
+
""" Apply scaling to the data.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
scalers (dict): The scalers for each feature.
|
291 |
+
"""
|
292 |
+
if use_single_scaler:
|
293 |
+
embeddings = np.hstack([
|
294 |
+
np.array(self.data['Smiles'].tolist()),
|
295 |
+
np.array(self.data['Uniprot'].tolist()),
|
296 |
+
np.array(self.data['E3 Ligase Uniprot'].tolist()),
|
297 |
+
np.array(self.data['Cell Line Identifier'].tolist()),
|
298 |
+
])
|
299 |
+
scaled_embeddings = scalers.transform(embeddings)
|
300 |
+
self.data = pd.DataFrame({
|
301 |
+
'Smiles': list(scaled_embeddings[:, :self.smiles_emb_dim]),
|
302 |
+
'Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]),
|
303 |
+
'E3 Ligase Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim+self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]),
|
304 |
+
'Cell Line Identifier': list(scaled_embeddings[:, -self.cell_emb_dim:]),
|
305 |
+
self.active_label: self.data[self.active_label]
|
306 |
+
})
|
307 |
+
else:
|
308 |
+
self.data['Smiles'] = self.data['Smiles'].apply(lambda x: scalers['Smiles'].transform(x[np.newaxis, :])[0])
|
309 |
+
self.data['Uniprot'] = self.data['Uniprot'].apply(lambda x: scalers['Uniprot'].transform(x[np.newaxis, :])[0])
|
310 |
+
self.data['E3 Ligase Uniprot'] = self.data['E3 Ligase Uniprot'].apply(lambda x: scalers['E3 Ligase Uniprot'].transform(x[np.newaxis, :])[0])
|
311 |
+
self.data['Cell Line Identifier'] = self.data['Cell Line Identifier'].apply(lambda x: scalers['Cell Line Identifier'].transform(x[np.newaxis, :])[0])
|
312 |
+
|
313 |
def __len__(self):
|
314 |
return len(self.data)
|
315 |
|
316 |
def __getitem__(self, idx):
|
317 |
+
elem = {
|
318 |
+
'smiles_emb': self.data['Smiles'].iloc[idx],
|
319 |
+
'poi_emb': self.data['Uniprot'].iloc[idx],
|
320 |
+
'e3_emb': self.data['E3 Ligase Uniprot'].iloc[idx],
|
321 |
+
'cell_emb': self.data['Cell Line Identifier'].iloc[idx],
|
322 |
+
'active': self.data[self.active_label].iloc[idx],
|
323 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
return elem
|
325 |
|
326 |
|
|
|
329 |
def __init__(
|
330 |
self,
|
331 |
hidden_dim: int,
|
332 |
+
smiles_emb_dim: int = fingerprint_size,
|
333 |
poi_emb_dim: int = 1024,
|
334 |
e3_emb_dim: int = 1024,
|
335 |
cell_emb_dim: int = 768,
|
336 |
batch_size: int = 32,
|
337 |
learning_rate: float = 1e-3,
|
338 |
dropout: float = 0.2,
|
339 |
+
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
|
340 |
train_dataset: PROTAC_Dataset = None,
|
341 |
val_dataset: PROTAC_Dataset = None,
|
342 |
test_dataset: PROTAC_Dataset = None,
|
343 |
disabled_embeddings: list = [],
|
344 |
+
apply_scaling: bool = False,
|
345 |
):
|
346 |
super().__init__()
|
347 |
self.poi_emb_dim = poi_emb_dim
|
|
|
356 |
self.val_dataset = val_dataset
|
357 |
self.test_dataset = test_dataset
|
358 |
self.disabled_embeddings = disabled_embeddings
|
359 |
+
self.apply_scaling = apply_scaling
|
360 |
# Set our init args as class attributes
|
361 |
self.__dict__.update(locals()) # Add arguments as attributes
|
362 |
# Save the arguments passed to init
|
|
|
367 |
]
|
368 |
self.save_hyperparameters(ignore=ignore_args_as_hyperparams)
|
369 |
|
370 |
+
# Define "surrogate models" branches
|
371 |
+
if self.join_embeddings != 'beginning':
|
372 |
+
if 'poi' not in self.disabled_embeddings:
|
373 |
+
self.poi_emb = nn.Linear(poi_emb_dim, hidden_dim)
|
374 |
+
if 'e3' not in self.disabled_embeddings:
|
375 |
+
self.e3_emb = nn.Linear(e3_emb_dim, hidden_dim)
|
376 |
+
if 'cell' not in self.disabled_embeddings:
|
377 |
+
self.cell_emb = nn.Linear(cell_emb_dim, hidden_dim)
|
378 |
+
if 'smiles' not in self.disabled_embeddings:
|
379 |
+
self.smiles_emb = nn.Linear(smiles_emb_dim, hidden_dim)
|
380 |
+
|
381 |
+
# Define hidden dimension for joining layer
|
382 |
+
if self.join_embeddings == 'beginning':
|
383 |
+
joint_dim = smiles_emb_dim if 'smiles' not in self.disabled_embeddings else 0
|
384 |
+
joint_dim += poi_emb_dim if 'poi' not in self.disabled_embeddings else 0
|
385 |
+
joint_dim += e3_emb_dim if 'e3' not in self.disabled_embeddings else 0
|
386 |
+
joint_dim += cell_emb_dim if 'cell' not in self.disabled_embeddings else 0
|
387 |
+
elif self.join_embeddings == 'concat':
|
388 |
joint_dim = hidden_dim * (4 - len(self.disabled_embeddings))
|
389 |
elif self.join_embeddings == 'sum':
|
390 |
joint_dim = hidden_dim
|
391 |
+
|
392 |
+
self.fc0 = nn.Linear(joint_dim, joint_dim)
|
393 |
self.fc1 = nn.Linear(joint_dim, hidden_dim)
|
394 |
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
395 |
self.fc3 = nn.Linear(hidden_dim, 1)
|
|
|
414 |
model = {1}.load_from_checkpoint('checkpoint.ckpt')
|
415 |
model.{0} = my_{0}
|
416 |
'''
|
417 |
+
|
418 |
+
# Apply scaling in datasets
|
419 |
+
if self.apply_scaling:
|
420 |
+
use_single_scaler = True if self.join_embeddings == 'beginning' else False
|
421 |
+
self.scalers = self.train_dataset.fit_scaling(use_single_scaler)
|
422 |
+
self.train_dataset.apply_scaling(self.scalers, use_single_scaler)
|
423 |
+
self.val_dataset.apply_scaling(self.scalers, use_single_scaler)
|
424 |
+
if self.test_dataset:
|
425 |
+
self.test_dataset.apply_scaling(self.scalers, use_single_scaler)
|
426 |
|
427 |
def forward(self, poi_emb, e3_emb, cell_emb, smiles_emb):
|
428 |
embeddings = []
|
429 |
+
if self.join_embeddings == 'beginning':
|
430 |
+
if 'poi' not in self.disabled_embeddings:
|
431 |
+
embeddings.append(poi_emb)
|
432 |
+
if 'e3' not in self.disabled_embeddings:
|
433 |
+
embeddings.append(e3_emb)
|
434 |
+
if 'cell' not in self.disabled_embeddings:
|
435 |
+
embeddings.append(cell_emb)
|
436 |
+
if 'smiles' not in self.disabled_embeddings:
|
437 |
+
embeddings.append(smiles_emb)
|
438 |
x = torch.cat(embeddings, dim=1)
|
439 |
+
x = self.dropout(F.relu(self.fc0(x)))
|
440 |
+
else:
|
441 |
+
if 'poi' not in self.disabled_embeddings:
|
442 |
+
embeddings.append(self.poi_emb(poi_emb))
|
443 |
+
if 'e3' not in self.disabled_embeddings:
|
444 |
+
embeddings.append(self.e3_emb(e3_emb))
|
445 |
+
if 'cell' not in self.disabled_embeddings:
|
446 |
+
embeddings.append(self.cell_emb(cell_emb))
|
447 |
+
if 'smiles' not in self.disabled_embeddings:
|
448 |
+
embeddings.append(self.smiles_emb(smiles_emb))
|
449 |
+
if self.join_embeddings == 'concat':
|
450 |
+
x = torch.cat(embeddings, dim=1)
|
451 |
+
elif self.join_embeddings == 'sum':
|
452 |
+
if len(embeddings) > 1:
|
453 |
+
embeddings = torch.stack(embeddings, dim=1)
|
454 |
+
x = torch.sum(embeddings, dim=1)
|
455 |
+
else:
|
456 |
+
x = embeddings[0]
|
457 |
x = self.dropout(F.relu(self.fc1(x)))
|
458 |
x = self.dropout(F.relu(self.fc2(x)))
|
459 |
x = self.fc3(x)
|
|
|
493 |
cell_emb = batch['cell_emb']
|
494 |
smiles_emb = batch['smiles_emb']
|
495 |
|
496 |
+
if self.apply_scaling:
|
497 |
+
if self.join_embeddings == 'beginning':
|
498 |
+
embeddings = np.hstack([
|
499 |
+
np.array(smiles_emb.tolist()),
|
500 |
+
np.array(poi_emb.tolist()),
|
501 |
+
np.array(e3_emb.tolist()),
|
502 |
+
np.array(cell_emb.tolist()),
|
503 |
+
])
|
504 |
+
embeddings = self.scalers.transform(embeddings)
|
505 |
+
smiles_emb = embeddings[:, :self.smiles_emb_dim]
|
506 |
+
poi_emb = embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.poi_emb_dim]
|
507 |
+
e3_emb = embeddings[:, self.smiles_emb_dim+self.poi_emb_dim:self.smiles_emb_dim+2*self.poi_emb_dim]
|
508 |
+
cell_emb = embeddings[:, -self.cell_emb_dim:]
|
509 |
+
else:
|
510 |
+
poi_emb = self.scalers['Uniprot'].transform(poi_emb)
|
511 |
+
e3_emb = self.scalers['E3 Ligase Uniprot'].transform(e3_emb)
|
512 |
+
cell_emb = self.scalers['Cell Line Identifier'].transform(cell_emb)
|
513 |
+
smiles_emb = self.scalers['Smiles'].transform(smiles_emb)
|
514 |
+
|
515 |
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
|
516 |
return torch.sigmoid(y_hat)
|
517 |
|
|
|
519 |
if self.train_dataset is None:
|
520 |
format = 'train_dataset', self.__class__.__name__
|
521 |
raise ValueError(self.missing_dataset_error.format(*format))
|
522 |
+
|
523 |
return DataLoader(
|
524 |
self.train_dataset,
|
525 |
batch_size=self.batch_size,
|
|
|
547 |
shuffle=False,
|
548 |
)
|
549 |
|
|
|
550 |
def train_model(
|
551 |
+
train_df: pd.DataFrame,
|
552 |
+
val_df: pd.DataFrame,
|
553 |
+
test_df: Optional[pd.DataFrame] = None,
|
554 |
+
hidden_dim: int = 768,
|
555 |
+
batch_size: int = 8,
|
556 |
+
learning_rate: float = 2e-5,
|
557 |
+
dropout: float = 0.2,
|
558 |
+
max_epochs: int = 50,
|
559 |
+
smiles_emb_dim: int = fingerprint_size,
|
560 |
+
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
|
561 |
+
smote_k_neighbors:int = 5,
|
562 |
+
use_smote: bool = True,
|
563 |
+
apply_scaling: bool = False,
|
564 |
+
active_label:str = 'Active',
|
565 |
+
fast_dev_run: bool = False,
|
566 |
+
use_logger: bool = True,
|
567 |
+
logger_name: str = 'protac',
|
568 |
+
disabled_embeddings: List[str] = [],
|
569 |
) -> tuple:
|
570 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
571 |
|
|
|
579 |
max_epochs (int): The maximum number of epochs.
|
580 |
smiles_emb_dim (int): The dimension of the SMILES embeddings.
|
581 |
smote_k_neighbors (int): The number of neighbors for the SMOTE oversampler.
|
|
|
582 |
fast_dev_run (bool): Whether to run a fast development run.
|
583 |
disabled_embeddings (list): The list of disabled embeddings.
|
584 |
|
|
|
591 |
protein_embeddings,
|
592 |
cell2embedding,
|
593 |
smiles2fp,
|
594 |
+
use_smote=use_smote,
|
595 |
+
oversampler=oversampler if use_smote else None,
|
596 |
+
active_label=active_label,
|
597 |
)
|
598 |
val_ds = PROTAC_Dataset(
|
599 |
val_df,
|
600 |
protein_embeddings,
|
601 |
cell2embedding,
|
602 |
smiles2fp,
|
603 |
+
active_label=active_label,
|
604 |
)
|
605 |
if test_df is not None:
|
606 |
test_ds = PROTAC_Dataset(
|
|
|
608 |
protein_embeddings,
|
609 |
cell2embedding,
|
610 |
smiles2fp,
|
611 |
+
active_label=active_label,
|
612 |
)
|
613 |
logger = pl.loggers.TensorBoardLogger(
|
614 |
save_dir='../logs',
|
|
|
618 |
pl.callbacks.EarlyStopping(
|
619 |
monitor='train_loss',
|
620 |
patience=10,
|
621 |
+
mode='min',
|
622 |
+
verbose=True,
|
623 |
+
),
|
624 |
+
pl.callbacks.EarlyStopping(
|
625 |
+
monitor='val_loss',
|
626 |
+
patience=5,
|
627 |
+
mode='min',
|
628 |
+
verbose=True,
|
629 |
+
),
|
630 |
+
pl.callbacks.EarlyStopping(
|
631 |
+
monitor='val_acc',
|
632 |
+
patience=10,
|
633 |
mode='max',
|
634 |
verbose=True,
|
635 |
),
|
|
|
649 |
enable_model_summary=False,
|
650 |
enable_checkpointing=False,
|
651 |
enable_progress_bar=False,
|
652 |
+
devices=1,
|
653 |
+
num_nodes=1,
|
654 |
)
|
655 |
model = PROTAC_Model(
|
656 |
hidden_dim=hidden_dim,
|
|
|
659 |
e3_emb_dim=1024,
|
660 |
cell_emb_dim=768,
|
661 |
batch_size=batch_size,
|
|
|
662 |
join_embeddings=join_embeddings,
|
663 |
+
dropout=dropout,
|
664 |
+
learning_rate=learning_rate,
|
665 |
+
apply_scaling=apply_scaling,
|
666 |
train_dataset=train_ds,
|
667 |
val_dataset=val_ds,
|
668 |
test_dataset=test_ds if test_df is not None else None,
|
|
|
680 |
# Setup hyperparameter optimization:
|
681 |
|
682 |
def objective(
|
683 |
+
trial: optuna.Trial,
|
684 |
+
train_df: pd.DataFrame,
|
685 |
+
val_df: pd.DataFrame,
|
686 |
+
hidden_dim_options: List[int] = [256, 512, 768],
|
687 |
+
batch_size_options: List[int] = [8, 16, 32],
|
688 |
+
learning_rate_options: Tuple[float, float] = (1e-5, 1e-3),
|
689 |
+
smote_k_neighbors_options: List[int] = list(range(3, 16)),
|
690 |
+
dropout_options: Tuple[float, float] = (0.1, 0.5),
|
691 |
+
fast_dev_run: bool = False,
|
692 |
+
active_label: str = 'Active',
|
693 |
+
disabled_embeddings: List[str] = [],
|
694 |
) -> float:
|
695 |
+
""" Objective function for hyperparameter optimization.
|
696 |
+
|
697 |
+
Args:
|
698 |
+
trial (optuna.Trial): The Optuna trial object.
|
699 |
+
train_df (pd.DataFrame): The training set.
|
700 |
+
val_df (pd.DataFrame): The validation set.
|
701 |
+
hidden_dim_options (List[int]): The hidden dimension options.
|
702 |
+
batch_size_options (List[int]): The batch size options.
|
703 |
+
learning_rate_options (Tuple[float, float]): The learning rate options.
|
704 |
+
smote_k_neighbors_options (List[int]): The SMOTE k neighbors options.
|
705 |
+
dropout_options (Tuple[float, float]): The dropout options.
|
706 |
+
fast_dev_run (bool): Whether to run a fast development run.
|
707 |
+
active_label (str): The active label column.
|
708 |
+
disabled_embeddings (List[str]): The list of disabled embeddings.
|
709 |
+
"""
|
710 |
# Generate the hyperparameters
|
711 |
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
|
712 |
batch_size = trial.suggest_categorical('batch_size', batch_size_options)
|
713 |
learning_rate = trial.suggest_float('learning_rate', *learning_rate_options, log=True)
|
714 |
+
join_embeddings = trial.suggest_categorical('join_embeddings', ['beginning', 'concat', 'sum'])
|
|
|
715 |
smote_k_neighbors = trial.suggest_categorical('smote_k_neighbors', smote_k_neighbors_options)
|
716 |
+
use_smote = trial.suggest_categorical('use_smote', [True, False])
|
717 |
+
apply_scaling = trial.suggest_categorical('apply_scaling', [True, False])
|
718 |
+
dropout = trial.suggest_float('dropout', *dropout_options)
|
719 |
|
720 |
# Train the model with the current set of hyperparameters
|
721 |
_, _, metrics = train_model(
|
|
|
725 |
batch_size=batch_size,
|
726 |
join_embeddings=join_embeddings,
|
727 |
learning_rate=learning_rate,
|
728 |
+
dropout=dropout,
|
729 |
+
max_epochs=100,
|
730 |
smote_k_neighbors=smote_k_neighbors,
|
731 |
+
apply_scaling=apply_scaling,
|
732 |
+
use_smote=use_smote,
|
733 |
use_logger=False,
|
734 |
fast_dev_run=fast_dev_run,
|
735 |
+
active_label=active_label,
|
736 |
disabled_embeddings=disabled_embeddings,
|
737 |
)
|
738 |
|
|
|
746 |
|
747 |
|
748 |
def hyperparameter_tuning_and_training(
|
749 |
+
train_df: pd.DataFrame,
|
750 |
+
val_df: pd.DataFrame,
|
751 |
+
test_df: pd.DataFrame,
|
752 |
+
fast_dev_run: bool = False,
|
753 |
+
n_trials: int = 50,
|
754 |
+
logger_name: str = 'protac_hparam_search',
|
755 |
+
active_label: str = 'Active',
|
756 |
+
disabled_embeddings: List[str] = [],
|
757 |
) -> tuple:
|
758 |
""" Hyperparameter tuning and training of a PROTAC model.
|
759 |
|
|
|
762 |
val_df (pd.DataFrame): The validation set.
|
763 |
test_df (pd.DataFrame): The test set.
|
764 |
fast_dev_run (bool): Whether to run a fast development run.
|
765 |
+
n_trials (int): The number of hyperparameter optimization trials.
|
766 |
+
logger_name (str): The name of the logger.
|
767 |
+
active_label (str): The active label column.
|
768 |
+
disabled_embeddings (List[str]): The list of disabled embeddings.
|
769 |
|
770 |
Returns:
|
771 |
tuple: The trained model, the trainer, and the best metrics.
|
|
|
774 |
hidden_dim_options = [256, 512, 768]
|
775 |
batch_size_options = [8, 16, 32]
|
776 |
learning_rate_options = (1e-5, 1e-3) # min and max values for loguniform distribution
|
|
|
777 |
smote_k_neighbors_options = list(range(3, 16))
|
778 |
|
779 |
# Set the verbosity of Optuna
|
|
|
786 |
trial,
|
787 |
train_df,
|
788 |
val_df,
|
789 |
+
hidden_dim_options=hidden_dim_options,
|
790 |
+
batch_size_options=batch_size_options,
|
791 |
+
learning_rate_options=learning_rate_options,
|
|
|
792 |
smote_k_neighbors_options=smote_k_neighbors_options,
|
793 |
fast_dev_run=fast_dev_run,
|
794 |
+
active_label=active_label,
|
795 |
disabled_embeddings=disabled_embeddings,
|
796 |
),
|
797 |
n_trials=n_trials,
|
|
|
805 |
use_logger=True,
|
806 |
logger_name=logger_name,
|
807 |
fast_dev_run=fast_dev_run,
|
808 |
+
active_label=active_label,
|
809 |
disabled_embeddings=disabled_embeddings,
|
810 |
**study.best_params,
|
811 |
)
|
|
|
818 |
|
819 |
|
820 |
def main(
|
821 |
+
active_col: str = 'Active (Dmax 0.6, pDC50 6.0)',
|
822 |
n_trials: int = 50,
|
|
|
823 |
fast_dev_run: bool = False,
|
824 |
+
test_split: float = 0.2,
|
825 |
+
cv_n_splits: int = 5,
|
826 |
):
|
827 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
828 |
|
|
|
833 |
fast_dev_run (bool): Whether to run a fast development run.
|
834 |
"""
|
835 |
## Set the Column to Predict
|
836 |
+
active_name = active_col.replace(' ', '_').strip('(').strip(')').strip(',')
|
|
|
|
|
|
|
|
|
837 |
|
838 |
+
# Get Dmax_threshold from the active_col
|
839 |
+
Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip())
|
840 |
+
pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
841 |
|
842 |
+
protac_df[active_col] = protac_df.apply(
|
843 |
+
lambda x: is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1
|
844 |
+
)
|
845 |
|
846 |
+
## Test Sets
|
|
|
|
|
|
|
|
|
847 |
|
848 |
+
test_indeces = {}
|
849 |
+
|
850 |
+
### Random Split
|
851 |
+
|
852 |
+
# Randomly select 20% of the active PROTACs as the test set
|
853 |
+
active_df = protac_df[protac_df[active_col].notna()].copy()
|
854 |
+
test_df = active_df.sample(frac=test_split, random_state=42)
|
855 |
+
test_indeces['random'] = test_df.index
|
856 |
+
|
857 |
+
### E3-based Split
|
858 |
+
|
859 |
+
encoder = OrdinalEncoder()
|
860 |
+
protac_df['E3 Group'] = encoder.fit_transform(protac_df[['E3 Ligase']]).astype(int)
|
861 |
+
active_df = protac_df[protac_df[active_col].notna()].copy()
|
862 |
+
test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
|
863 |
+
test_indeces['e3_ligase'] = test_df.index
|
864 |
+
|
865 |
+
### Tanimoto-based Split
|
866 |
+
|
867 |
+
n_bins_tanimoto = 200
|
868 |
+
tanimoto_groups = pd.cut(protac_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
|
869 |
+
encoder = OrdinalEncoder()
|
870 |
+
protac_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
|
871 |
+
active_df = protac_df[protac_df[active_col].notna()].copy()
|
872 |
+
|
873 |
+
test_df = []
|
874 |
+
# For each group, get the number of active and inactive entries. Then, add those
|
875 |
+
# entries to the test_df if: 1) the test_df lenght + the group entries is less
|
876 |
+
# 20% of the active_df lenght, and 2) the percentage of True and False entries
|
877 |
+
# in the active_col in test_df is roughly 50%.
|
878 |
+
# Start the loop from the groups containing the smallest number of entries.
|
879 |
+
for group in reversed(active_df['Tanimoto Group'].value_counts().index):
|
880 |
+
group_df = active_df[active_df['Tanimoto Group'] == group]
|
881 |
+
if test_df == []:
|
882 |
+
test_df.append(group_df)
|
883 |
+
continue
|
884 |
+
|
885 |
+
num_entries = len(group_df)
|
886 |
+
num_active_group = group_df[active_col].sum()
|
887 |
+
num_inactive_group = num_entries - num_active_group
|
888 |
+
|
889 |
+
tmp_test_df = pd.concat(test_df)
|
890 |
+
num_entries_test = len(tmp_test_df)
|
891 |
+
num_active_test = tmp_test_df[active_col].sum()
|
892 |
+
num_inactive_test = num_entries_test - num_active_test
|
893 |
+
|
894 |
+
# Check if the group entries can be added to the test_df
|
895 |
+
if num_entries_test + num_entries < test_split * len(active_df):
|
896 |
+
# Add anything at the beggining
|
897 |
+
if num_entries_test + num_entries < test_split / 2 * len(active_df):
|
898 |
+
test_df.append(group_df)
|
899 |
+
continue
|
900 |
+
# Be more selective and make sure that the percentage of active and
|
901 |
+
# inactive is balanced
|
902 |
+
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
|
903 |
+
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
|
904 |
+
test_df.append(group_df)
|
905 |
+
test_df = pd.concat(test_df)
|
906 |
+
# Save to global dictionary of test indeces
|
907 |
+
test_indeces['tanimoto'] = test_df.index
|
908 |
+
|
909 |
+
### Target-based Split
|
910 |
+
|
911 |
+
encoder = OrdinalEncoder()
|
912 |
+
protac_df['Uniprot Group'] = encoder.fit_transform(protac_df[['Uniprot']]).astype(int)
|
913 |
+
active_df = protac_df[protac_df[active_col].notna()].copy()
|
914 |
+
|
915 |
+
test_df = []
|
916 |
+
# For each group, get the number of active and inactive entries. Then, add those
|
917 |
+
# entries to the test_df if: 1) the test_df lenght + the group entries is less
|
918 |
+
# 20% of the active_df lenght, and 2) the percentage of True and False entries
|
919 |
+
# in the active_col in test_df is roughly 50%.
|
920 |
+
# Start the loop from the groups containing the smallest number of entries.
|
921 |
+
for group in reversed(active_df['Uniprot'].value_counts().index):
|
922 |
+
group_df = active_df[active_df['Uniprot'] == group]
|
923 |
+
if test_df == []:
|
924 |
+
test_df.append(group_df)
|
925 |
+
continue
|
926 |
+
|
927 |
+
num_entries = len(group_df)
|
928 |
+
num_active_group = group_df[active_col].sum()
|
929 |
+
num_inactive_group = num_entries - num_active_group
|
930 |
+
|
931 |
+
tmp_test_df = pd.concat(test_df)
|
932 |
+
num_entries_test = len(tmp_test_df)
|
933 |
+
num_active_test = tmp_test_df[active_col].sum()
|
934 |
+
num_inactive_test = num_entries_test - num_active_test
|
935 |
+
|
936 |
+
# Check if the group entries can be added to the test_df
|
937 |
+
if num_entries_test + num_entries < test_split * len(active_df):
|
938 |
+
# Add anything at the beggining
|
939 |
+
if num_entries_test + num_entries < test_split / 2 * len(active_df):
|
940 |
+
test_df.append(group_df)
|
941 |
+
continue
|
942 |
+
# Be more selective and make sure that the percentage of active and
|
943 |
+
# inactive is balanced
|
944 |
+
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
|
945 |
+
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
|
946 |
+
test_df.append(group_df)
|
947 |
+
test_df = pd.concat(test_df)
|
948 |
+
# Save to global dictionary of test indeces
|
949 |
+
test_indeces['uniprot'] = test_df.index
|
950 |
|
951 |
+
## Cross-Validation Training
|
952 |
+
|
953 |
# Make directory ../reports if it does not exist
|
954 |
if not os.path.exists('../reports'):
|
955 |
os.makedirs('../reports')
|
956 |
|
957 |
+
for split_type, indeces in test_indeces.items():
|
958 |
+
active_df = protac_df[protac_df[active_col].notna()].copy()
|
959 |
+
test_df = active_df.loc[indeces]
|
960 |
+
train_val_df = active_df[~active_df.index.isin(test_df.index)]
|
961 |
+
|
962 |
+
if split_type == 'random':
|
963 |
+
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
|
964 |
+
group = None
|
965 |
+
elif split_type == 'e3_ligase':
|
966 |
+
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
|
967 |
+
group = train_val_df['E3 Group'].to_numpy()
|
968 |
+
elif split_type == 'tanimoto':
|
969 |
+
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
|
970 |
+
group = train_val_df['Tanimoto Group'].to_numpy()
|
971 |
+
elif split_type == 'uniprot':
|
972 |
+
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
|
973 |
+
group = train_val_df['Uniprot Group'].to_numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
974 |
# Start the CV over the folds
|
975 |
X = train_val_df.drop(columns=active_col)
|
976 |
y = train_val_df[active_col].tolist()
|
977 |
+
report = []
|
978 |
+
for k, (train_index, val_index) in enumerate(kf.split(X, y, group)):
|
979 |
print('-' * 100)
|
980 |
+
print(f'Starting CV for group type: {split_type}, fold: {k}')
|
981 |
print('-' * 100)
|
982 |
train_df = train_val_df.iloc[train_index]
|
983 |
val_df = train_val_df.iloc[val_index]
|
984 |
+
|
985 |
+
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
|
986 |
+
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
|
987 |
+
|
988 |
stats = {
|
989 |
'fold': k,
|
|
|
990 |
'train_len': len(train_df),
|
991 |
'val_len': len(val_df),
|
992 |
'train_perc': len(train_df) / len(train_val_df),
|
993 |
'val_perc': len(val_df) / len(train_val_df),
|
994 |
+
'train_active (%)': train_df[active_col].sum() / len(train_df) * 100,
|
995 |
+
'train_inactive (%)': (len(train_df) - train_df[active_col].sum()) / len(train_df) * 100,
|
996 |
+
'val_active (%)': val_df[active_col].sum() / len(val_df) * 100,
|
997 |
+
'val_inactive (%)': (len(val_df) - val_df[active_col].sum()) / len(val_df) * 100,
|
998 |
+
'num_leaking_uniprot': len(leaking_uniprot),
|
999 |
+
'num_leaking_smiles': len(leaking_smiles),
|
1000 |
+
'train_leaking_uniprot (%)': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df) * 100,
|
1001 |
+
'train_leaking_smiles (%)': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df) * 100,
|
|
|
1002 |
}
|
1003 |
+
if split_type != 'random':
|
1004 |
+
stats['train_unique_groups'] = len(np.unique(group[train_index]))
|
1005 |
+
stats['val_unique_groups'] = len(np.unique(group[val_index]))
|
1006 |
+
report.append(stats)
|
1007 |
+
|
1008 |
# Train and evaluate the model
|
1009 |
model, trainer, metrics = hyperparameter_tuning_and_training(
|
1010 |
train_df,
|
|
|
1012 |
test_df,
|
1013 |
fast_dev_run=fast_dev_run,
|
1014 |
n_trials=n_trials,
|
1015 |
+
logger_name=f'protac_{active_name}_{split_type}_fold_{k}',
|
1016 |
+
active_label=active_col,
|
1017 |
)
|
1018 |
hparams = {p.strip('hparam_'): v for p, v in stats.items() if p.startswith('hparam_')}
|
1019 |
stats.update(metrics)
|
|
|
1032 |
val_df,
|
1033 |
test_df,
|
1034 |
fast_dev_run=fast_dev_run,
|
1035 |
+
logger_name=f'protac_{active_name}_{split_type}_fold_{k}_disabled-{"-".join(disabled_embeddings)}',
|
1036 |
+
active_label=active_col,
|
1037 |
disabled_embeddings=disabled_embeddings,
|
1038 |
**hparams,
|
1039 |
)
|
|
|
1042 |
del model
|
1043 |
del trainer
|
1044 |
|
1045 |
+
report = pd.DataFrame(report)
|
1046 |
+
report.to_csv(
|
1047 |
+
f'../reports/cv_report_hparam_search_{cv_n_splits}-splits_{active_name}_test_split_{test_split}.csv',
|
1048 |
+
index=False,
|
1049 |
+
)
|
1050 |
|
1051 |
|
1052 |
if __name__ == '__main__':
|