File size: 14,299 Bytes
ea572f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
from collections import defaultdict
import warnings
from protac_degradation_predictor.config import config
from protac_degradation_predictor.data_utils import (
load_protein2embedding,
load_cell2embedding,
is_active,
)
from protac_degradation_predictor.pytorch_models import (
train_model,
)
from protac_degradation_predictor.optuna_utils import (
hyperparameter_tuning_and_training,
)
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
from jsonargparse import CLI
import pandas as pd
from tqdm import tqdm
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
from sklearn.model_selection import (
StratifiedKFold,
StratifiedGroupKFold,
)
# Ignore UserWarning from Matplotlib
warnings.filterwarnings("ignore", ".*FixedLocator*")
# Ignore UserWarning from PyTorch Lightning
warnings.filterwarnings("ignore", ".*does not have many workers.*")
def main(
active_col: str = 'Active (Dmax 0.6, pDC50 6.0)',
n_trials: int = 50,
fast_dev_run: bool = False,
test_split: float = 0.2,
cv_n_splits: int = 5,
):
""" Train a PROTAC model using the given datasets and hyperparameters.
Args:
use_ored_activity (bool): Whether to use the 'Active - OR' column.
n_trials (int): The number of hyperparameter optimization trials.
n_splits (int): The number of cross-validation splits.
fast_dev_run (bool): Whether to run a fast development run.
"""
## Set the Column to Predict
active_name = active_col.replace(' ', '_').replace('(', '').replace(')', '').replace(',', '')
# Get Dmax_threshold from the active_col
Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip())
pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip())
## Load the Data
protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
# Map E3 Ligase Iap to IAP
protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
protac_df[active_col] = protac_df.apply(
lambda x: is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1
)
## Test Sets
test_indeces = {}
### Random Split
# Randomly select 20% of the active PROTACs as the test set
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = active_df.sample(frac=test_split, random_state=42)
test_indeces['random'] = test_df.index
### E3-based Split
encoder = OrdinalEncoder()
protac_df['E3 Group'] = encoder.fit_transform(protac_df[['E3 Ligase']]).astype(int)
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
test_indeces['e3_ligase'] = test_df.index
### Tanimoto-based Split
#### Precompute fingerprints
morgan_fpgen = AllChem.GetMorganGenerator(
radius=config.morgan_radius,
fpSize=config.fingerprint_size,
includeChirality=True,
)
smiles2fp = {}
for smiles in tqdm(protac_df['Smiles'].unique().tolist(), desc='Precomputing fingerprints'):
# Get the fingerprint as a bit vector
morgan_fp = morgan_fpgen.GetFingerprint(Chem.MolFromSmiles(smiles))
smiles2fp[smiles] = morgan_fp
# Get the pair-wise tanimoto similarity between the PROTAC fingerprints
tanimoto_matrix = defaultdict(list)
for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
fp1 = smiles2fp[smiles1]
# TODO: Use BulkTanimotoSimilarity for better performance
for j, smiles2 in enumerate(protac_df['Smiles'].unique()):
if j < i:
continue
fp2 = smiles2fp[smiles2]
tanimoto_dist = DataStructs.TanimotoSimilarity(fp1, fp2)
tanimoto_matrix[smiles1].append(tanimoto_dist)
avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}
# Make the grouping of the PROTACs based on the Tanimoto similarity
n_bins_tanimoto = 200
tanimoto_groups = pd.cut(protac_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
protac_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
active_df = protac_df[protac_df[active_col].notna()].copy()
# Sort the groups so that samples with the highest tanimoto similarity,
# i.e., the "less similar" ones, are placed in the test set first
tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_col in test_df is roughly 50%.
for group in tanimoto_groups:
group_df = active_df[active_df['Tanimoto Group'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_col].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_col].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
# Save to global dictionary of test indeces
test_indeces['tanimoto'] = test_df.index
### Target-based Split
encoder = OrdinalEncoder()
protac_df['Uniprot Group'] = encoder.fit_transform(protac_df[['Uniprot']]).astype(int)
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_col in test_df is roughly 50%.
# Start the loop from the groups containing the smallest number of entries.
for group in reversed(active_df['Uniprot'].value_counts().index):
group_df = active_df[active_df['Uniprot'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_col].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_col].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
# Save to global dictionary of test indeces
test_indeces['uniprot'] = test_df.index
## Cross-Validation Training
# Make directory ../reports if it does not exist
if not os.path.exists('../reports'):
os.makedirs('../reports')
# Load embedding dictionaries
protein2embedding = load_protein2embedding('../data/uniprot2embedding.h5')
cell2embedding = load_cell2embedding('../data/cell2embedding.pkl')
report = []
for split_type, indeces in test_indeces.items():
active_df = protac_df[protac_df[active_col].notna()].copy()
test_df = active_df.loc[indeces]
train_val_df = active_df[~active_df.index.isin(test_df.index)]
if split_type == 'random':
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = None
elif split_type == 'e3_ligase':
kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['E3 Group'].to_numpy()
elif split_type == 'tanimoto':
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['Tanimoto Group'].to_numpy()
elif split_type == 'uniprot':
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
group = train_val_df['Uniprot Group'].to_numpy()
# Start the CV over the folds
X = train_val_df.drop(columns=active_col)
y = train_val_df[active_col].tolist()
for k, (train_index, val_index) in enumerate(kf.split(X, y, group)):
print('-' * 100)
print(f'Starting CV for group type: {split_type}, fold: {k}')
print('-' * 100)
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
stats = {
'fold': k,
'split_type': split_type,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
'train_active_perc': train_df[active_col].sum() / len(train_df),
'train_inactive_perc': (len(train_df) - train_df[active_col].sum()) / len(train_df),
'val_active_perc': val_df[active_col].sum() / len(val_df),
'val_inactive_perc': (len(val_df) - val_df[active_col].sum()) / len(val_df),
'test_active_perc': test_df[active_col].sum() / len(test_df),
'test_inactive_perc': (len(test_df) - test_df[active_col].sum()) / len(test_df),
'num_leaking_uniprot': len(leaking_uniprot),
'num_leaking_smiles': len(leaking_smiles),
'train_leaking_uniprot_perc': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df),
'train_leaking_smiles_perc': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df),
}
if split_type != 'random':
stats['train_unique_groups'] = len(np.unique(group[train_index]))
stats['val_unique_groups'] = len(np.unique(group[val_index]))
print(stats)
# # Train and evaluate the model
# model, trainer, metrics = hyperparameter_tuning_and_training(
# protein2embedding,
# cell2embedding,
# smiles2fp,
# train_df,
# val_df,
# test_df,
# fast_dev_run=fast_dev_run,
# n_trials=n_trials,
# logger_name=f'protac_{active_name}_{split_type}_fold_{k}_test_split_{test_split}',
# active_label=active_col,
# study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}.pkl',
# )
# hparams = {p.replace('hparam_', ''): v for p, v in stats.items() if p.startswith('hparam_')}
# stats.update(metrics)
# report.append(stats.copy())
# del model
# del trainer
# # Ablation study: disable embeddings at a time
# for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
# print('-' * 100)
# print(f'Ablation study with disabled embeddings: {disabled_embeddings}')
# print('-' * 100)
# stats['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
# model, trainer, metrics = train_model(
# protein2embedding,
# cell2embedding,
# smiles2fp,
# train_df,
# val_df,
# test_df,
# fast_dev_run=fast_dev_run,
# logger_name=f'protac_{active_name}_{split_type}_fold_{k}_disabled-{"-".join(disabled_embeddings)}',
# active_label=active_col,
# disabled_embeddings=disabled_embeddings,
# **hparams,
# )
# stats.update(metrics)
# report.append(stats.copy())
# del model
# del trainer
# report_df = pd.DataFrame(report)
# report_df.to_csv(
# f'../reports/cv_report_hparam_search_{cv_n_splits}-splits_{active_name}_test_split_{test_split}_sklearn.csv',
# index=False,
# )
if __name__ == '__main__':
cli = CLI(main) |