File size: 31,296 Bytes
d36ec1d 91692a4 d36ec1d 91692a4 d36ec1d d6ec1f3 91692a4 d36ec1d 91692a4 d36ec1d 91692a4 d36ec1d 91692a4 d36ec1d b09510c 91692a4 b09510c 91692a4 d6ec1f3 b09510c 91692a4 b09510c 91692a4 b09510c 91692a4 b09510c 91692a4 b09510c 91692a4 7e4c438 91692a4 b09510c d6ec1f3 b09510c 7e4c438 91692a4 b09510c 7e4c438 b09510c d6ec1f3 b09510c d6ec1f3 b09510c d6ec1f3 b09510c 91692a4 b09510c 7e4c438 b09510c 91692a4 b09510c 0c6f1b3 b09510c 91692a4 7e4c438 b09510c 91692a4 b09510c 7e4c438 d6ec1f3 b09510c 91692a4 b09510c d6ec1f3 91692a4 b09510c 7e4c438 b09510c 91692a4 b09510c 91692a4 b09510c 7e4c438 91692a4 b09510c d6ec1f3 b09510c 91692a4 b09510c 7e4c438 91692a4 7e4c438 b09510c 91692a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
import optuna
from optuna.samplers import TPESampler
import h5py
import os
import pickle
import warnings
import logging
import pandas as pd
import numpy as np
import urllib.request
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
from collections import defaultdict
from typing import Literal
from jsonargparse import CLI
from tqdm.auto import tqdm
from imblearn.over_sampling import SMOTE, ADASYN
from sklearn.preprocessing import OrdinalEncoder, StandardScaler, LabelEncoder
from sklearn.model_selection import (
StratifiedKFold,
StratifiedGroupKFold,
)
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pytorch_lightning as pl
from torch.utils.data import Dataset, DataLoader
from torchmetrics import (
Accuracy,
AUROC,
Precision,
Recall,
F1Score,
)
from torchmetrics import MetricCollection
# Ignore UserWarning from Matplotlib
warnings.filterwarnings("ignore", ".*FixedLocator*")
# Ignore UserWarning from PyTorch Lightning
warnings.filterwarnings("ignore", ".*does not have many workers.*")
protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
protac_df.head()
# Get the unique Article IDs of the entries with NaN values in the Active column
nan_active = protac_df[protac_df['Active'].isna()]['Article DOI'].unique()
nan_active
# Map E3 Ligase Iap to IAP
protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
cells = sorted(protac_df['Cell Type'].dropna().unique().tolist())
print(f'Number of non-cleaned cell lines: {len(cells)}')
cells = sorted(protac_df['Cell Line Identifier'].dropna().unique().tolist())
print(f'Number of cleaned cell lines: {len(cells)}')
unlabeled_df = protac_df[protac_df['Active'].isna()]
print(f'Number of compounds in test set: {len(unlabeled_df)}')
# ## Load Protein Embeddings
# Protein embeddings downloaded from [Uniprot](https://www.uniprot.org/help/embeddings).
#
# Please note that running the following cell the first time might take a while.
download_link = "https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/embeddings/UP000005640_9606/per-protein.h5"
embeddings_path = "../data/uniprot2embedding.h5"
if not os.path.exists(embeddings_path):
# Download the file
print(f'Downloading embeddings from {download_link}')
urllib.request.urlretrieve(download_link, embeddings_path)
protein_embeddings = {}
with h5py.File("../data/uniprot2embedding.h5", "r") as file:
uniprots = protac_df['Uniprot'].unique().tolist()
uniprots += protac_df['E3 Ligase Uniprot'].unique().tolist()
for i, sequence_id in tqdm(enumerate(uniprots), desc='Loading protein embeddings'):
try:
embedding = file[sequence_id][:]
protein_embeddings[sequence_id] = np.array(embedding)
except KeyError:
print(f'KeyError for {sequence_id}')
protein_embeddings[sequence_id] = np.zeros((1024,))
## Load Cell Embeddings
cell2embedding_filepath = '../data/cell2embedding.pkl'
with open(cell2embedding_filepath, 'rb') as f:
cell2embedding = pickle.load(f)
print(f'Loaded {len(cell2embedding)} cell lines')
emb_shape = cell2embedding[list(cell2embedding.keys())[0]].shape
# Assign all-zero vectors to cell lines that are not in the embedding file
for cell_line in protac_df['Cell Line Identifier'].unique():
if cell_line not in cell2embedding:
cell2embedding[cell_line] = np.zeros(emb_shape)
## Precompute Molecular Fingerprints
morgan_fpgen = AllChem.GetMorganGenerator(
radius=15,
fpSize=1024,
includeChirality=True,
)
smiles2fp = {}
for smiles in tqdm(protac_df['Smiles'].unique().tolist(), desc='Precomputing fingerprints'):
# Get the fingerprint as a bit vector
morgan_fp = morgan_fpgen.GetFingerprint(Chem.MolFromSmiles(smiles))
smiles2fp[smiles] = morgan_fp
# Count the number of unique SMILES and the number of unique Morgan fingerprints
print(f'Number of unique SMILES: {len(smiles2fp)}')
print(f'Number of unique fingerprints: {len(set([tuple(fp) for fp in smiles2fp.values()]))}')
# Get the list of SMILES with overlapping fingerprints
overlapping_smiles = []
unique_fps = set()
for smiles, fp in smiles2fp.items():
if tuple(fp) in unique_fps:
overlapping_smiles.append(smiles)
else:
unique_fps.add(tuple(fp))
print(f'Number of SMILES with overlapping fingerprints: {len(overlapping_smiles)}')
print(f'Number of overlapping SMILES in protac_df: {len(protac_df[protac_df["Smiles"].isin(overlapping_smiles)])}')
# Get the pair-wise tanimoto similarity between the PROTAC fingerprints
tanimoto_matrix = defaultdict(list)
for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
fp1 = smiles2fp[smiles1]
# TODO: Use BulkTanimotoSimilarity
for j, smiles2 in enumerate(protac_df['Smiles'].unique()):
if j < i:
continue
fp2 = smiles2fp[smiles2]
tanimoto_dist = DataStructs.TanimotoSimilarity(fp1, fp2)
tanimoto_matrix[smiles1].append(tanimoto_dist)
avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}
class PROTAC_Dataset(Dataset):
def __init__(
self,
protac_df,
protein_embeddings=protein_embeddings,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
use_smote=False,
oversampler=None,
use_ored_activity=False,
):
""" Initialize the PROTAC dataset
Args:
protac_df (pd.DataFrame): The PROTAC dataframe
protein_embeddings (dict): Dictionary of protein embeddings
cell2embedding (dict): Dictionary of cell line embeddings
smiles2fp (dict): Dictionary of SMILES to fingerprint
use_smote (bool): Whether to use SMOTE for oversampling
use_ored_activity (bool): Whether to use the 'Active - OR' column
"""
# Filter out examples with NaN in 'Active' column
self.data = protac_df # [~protac_df['Active'].isna()]
self.protein_embeddings = protein_embeddings
self.cell2embedding = cell2embedding
self.smiles2fp = smiles2fp
self.smiles_emb_dim = smiles2fp[list(smiles2fp.keys())[0]].shape[0]
self.protein_emb_dim = protein_embeddings[list(
protein_embeddings.keys())[0]].shape[0]
self.cell_emb_dim = cell2embedding[list(
cell2embedding.keys())[0]].shape[0]
self.active_label = 'Active - OR' if use_ored_activity else 'Active'
self.use_smote = use_smote
self.oversampler = oversampler
# Apply SMOTE
if self.use_smote:
self.apply_smote()
def apply_smote(self):
# Prepare the dataset for SMOTE
features = []
labels = []
for _, row in self.data.iterrows():
smiles_emb = smiles2fp[row['Smiles']]
poi_emb = protein_embeddings[row['Uniprot']]
e3_emb = protein_embeddings[row['E3 Ligase Uniprot']]
cell_emb = cell2embedding[row['Cell Line Identifier']]
features.append(np.hstack([
smiles_emb.astype(np.float32),
poi_emb.astype(np.float32),
e3_emb.astype(np.float32),
cell_emb.astype(np.float32),
]))
labels.append(row[self.active_label])
# Convert to numpy array
features = np.array(features).astype(np.float32)
labels = np.array(labels).astype(np.float32)
# Initialize SMOTE and fit
if self.oversampler is None:
oversampler = SMOTE(random_state=42)
else:
oversampler = self.oversampler
features_smote, labels_smote = oversampler.fit_resample(features, labels)
# Separate the features back into their respective embeddings
smiles_embs = features_smote[:, :self.smiles_emb_dim]
poi_embs = features_smote[:,
self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]
e3_embs = features_smote[:, self.smiles_emb_dim +
self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]
cell_embs = features_smote[:, -self.cell_emb_dim:]
# Reconstruct the dataframe with oversampled data
df_smote = pd.DataFrame({
'Smiles': list(smiles_embs),
'Uniprot': list(poi_embs),
'E3 Ligase Uniprot': list(e3_embs),
'Cell Line Identifier': list(cell_embs),
self.active_label: labels_smote
})
self.data = df_smote
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if self.use_smote:
# NOTE: We do not need to look up the embeddings anymore
elem = {
'smiles_emb': self.data['Smiles'].iloc[idx],
'poi_emb': self.data['Uniprot'].iloc[idx],
'e3_emb': self.data['E3 Ligase Uniprot'].iloc[idx],
'cell_emb': self.data['Cell Line Identifier'].iloc[idx],
'active': self.data[self.active_label].iloc[idx],
}
else:
elem = {
'smiles_emb': self.smiles2fp[self.data['Smiles'].iloc[idx]].astype(np.float32),
'poi_emb': self.protein_embeddings[self.data['Uniprot'].iloc[idx]].astype(np.float32),
'e3_emb': self.protein_embeddings[self.data['E3 Ligase Uniprot'].iloc[idx]].astype(np.float32),
'cell_emb': self.cell2embedding[self.data['Cell Line Identifier'].iloc[idx]].astype(np.float32),
'active': 1. if self.data[self.active_label].iloc[idx] else 0.,
}
return elem
class PROTAC_Model(pl.LightningModule):
def __init__(
self,
hidden_dim: int,
smiles_emb_dim: int = 1024,
poi_emb_dim: int = 1024,
e3_emb_dim: int = 1024,
cell_emb_dim: int = 768,
batch_size: int = 32,
learning_rate: float = 1e-3,
dropout: float = 0.2,
join_embeddings: Literal['concat', 'sum'] = 'concat',
train_dataset: PROTAC_Dataset = None,
val_dataset: PROTAC_Dataset = None,
test_dataset: PROTAC_Dataset = None,
disabled_embeddings: list = [],
):
super().__init__()
self.poi_emb_dim = poi_emb_dim
self.e3_emb_dim = e3_emb_dim
self.cell_emb_dim = cell_emb_dim
self.smiles_emb_dim = smiles_emb_dim
self.hidden_dim = hidden_dim
self.batch_size = batch_size
self.learning_rate = learning_rate
self.join_embeddings = join_embeddings
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.disabled_embeddings = disabled_embeddings
# Set our init args as class attributes
self.__dict__.update(locals()) # Add arguments as attributes
# Save the arguments passed to init
ignore_args_as_hyperparams = [
'train_dataset',
'test_dataset',
'val_dataset',
]
self.save_hyperparameters(ignore=ignore_args_as_hyperparams)
if 'poi' not in self.disabled_embeddings:
self.poi_emb = nn.Linear(poi_emb_dim, hidden_dim)
if 'e3' not in self.disabled_embeddings:
self.e3_emb = nn.Linear(e3_emb_dim, hidden_dim)
if 'cell' not in self.disabled_embeddings:
self.cell_emb = nn.Linear(cell_emb_dim, hidden_dim)
if 'smiles' not in self.disabled_embeddings:
self.smiles_emb = nn.Linear(smiles_emb_dim, hidden_dim)
if self.join_embeddings == 'concat':
joint_dim = hidden_dim * (4 - len(self.disabled_embeddings))
elif self.join_embeddings == 'sum':
joint_dim = hidden_dim
self.fc1 = nn.Linear(joint_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
self.dropout = nn.Dropout(p=dropout)
stages = ['train_metrics', 'val_metrics', 'test_metrics']
self.metrics = nn.ModuleDict({s: MetricCollection({
'acc': Accuracy(task='binary'),
'roc_auc': AUROC(task='binary'),
'precision': Precision(task='binary'),
'recall': Recall(task='binary'),
'f1_score': F1Score(task='binary'),
'opt_score': Accuracy(task='binary') + F1Score(task='binary'),
'hp_metric': Accuracy(task='binary'),
}, prefix=s.replace('metrics', '')) for s in stages})
# Misc settings
self.missing_dataset_error = \
'''Class variable `{0}` is None. If the model was loaded from a checkpoint, the dataset must be set manually:
model = {1}.load_from_checkpoint('checkpoint.ckpt')
model.{0} = my_{0}
'''
def forward(self, poi_emb, e3_emb, cell_emb, smiles_emb):
embeddings = []
if 'poi' not in self.disabled_embeddings:
embeddings.append(self.poi_emb(poi_emb))
if 'e3' not in self.disabled_embeddings:
embeddings.append(self.e3_emb(e3_emb))
if 'cell' not in self.disabled_embeddings:
embeddings.append(self.cell_emb(cell_emb))
if 'smiles' not in self.disabled_embeddings:
embeddings.append(self.smiles_emb(smiles_emb))
if self.join_embeddings == 'concat':
x = torch.cat(embeddings, dim=1)
elif self.join_embeddings == 'sum':
if len(embeddings) > 1:
embeddings = torch.stack(embeddings, dim=1)
x = torch.sum(embeddings, dim=1)
else:
x = embeddings[0]
x = self.dropout(F.relu(self.fc1(x)))
x = self.dropout(F.relu(self.fc2(x)))
x = self.fc3(x)
return x
def step(self, batch, batch_idx, stage):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
y = batch['active'].float().unsqueeze(1)
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
loss = F.binary_cross_entropy_with_logits(y_hat, y)
self.metrics[f'{stage}_metrics'].update(y_hat, y)
self.log(f'{stage}_loss', loss, on_epoch=True, prog_bar=True)
self.log_dict(self.metrics[f'{stage}_metrics'], on_epoch=True)
return loss
def training_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'train')
def validation_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'val')
def test_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'test')
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.learning_rate)
def predict_step(self, batch, batch_idx):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
return torch.sigmoid(y_hat)
def train_dataloader(self):
if self.train_dataset is None:
format = 'train_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
# drop_last=True,
)
def val_dataloader(self):
if self.val_dataset is None:
format = 'val_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
)
def test_dataloader(self):
if self.test_dataset is None:
format = 'test_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
)
def train_model(
train_df,
val_df,
test_df=None,
hidden_dim=768,
batch_size=8,
learning_rate=2e-5,
max_epochs=50,
smiles_emb_dim=1024,
join_embeddings='concat',
smote_k_neighbors=5,
use_ored_activity=True,
fast_dev_run=False,
use_logger=True,
logger_name='protac',
disabled_embeddings=[],
) -> tuple:
""" Train a PROTAC model using the given datasets and hyperparameters.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
hidden_dim (int): The hidden dimension of the model.
batch_size (int): The batch size.
learning_rate (float): The learning rate.
max_epochs (int): The maximum number of epochs.
smiles_emb_dim (int): The dimension of the SMILES embeddings.
smote_k_neighbors (int): The number of neighbors for the SMOTE oversampler.
use_ored_activity (bool): Whether to use the ORED activity column, i.e., "Active - OR" column.
fast_dev_run (bool): Whether to run a fast development run.
disabled_embeddings (list): The list of disabled embeddings.
Returns:
tuple: The trained model, the trainer, and the metrics.
"""
oversampler = SMOTE(k_neighbors=smote_k_neighbors, random_state=42)
train_ds = PROTAC_Dataset(
train_df,
protein_embeddings,
cell2embedding,
smiles2fp,
use_smote=True,
oversampler=oversampler,
use_ored_activity=use_ored_activity,
)
val_ds = PROTAC_Dataset(
val_df,
protein_embeddings,
cell2embedding,
smiles2fp,
use_ored_activity=use_ored_activity,
)
if test_df is not None:
test_ds = PROTAC_Dataset(
test_df,
protein_embeddings,
cell2embedding,
smiles2fp,
use_ored_activity=use_ored_activity,
)
logger = pl.loggers.TensorBoardLogger(
save_dir='../logs',
name=logger_name,
)
callbacks = [
pl.callbacks.EarlyStopping(
monitor='train_loss',
patience=10,
mode='max',
verbose=True,
),
# pl.callbacks.ModelCheckpoint(
# monitor='val_acc',
# mode='max',
# verbose=True,
# filename='{epoch}-{val_metrics_opt_score:.4f}',
# ),
]
# Define Trainer
trainer = pl.Trainer(
logger=logger if use_logger else False,
callbacks=callbacks,
max_epochs=max_epochs,
fast_dev_run=fast_dev_run,
enable_model_summary=False,
enable_checkpointing=False,
enable_progress_bar=False,
)
model = PROTAC_Model(
hidden_dim=hidden_dim,
smiles_emb_dim=smiles_emb_dim,
poi_emb_dim=1024,
e3_emb_dim=1024,
cell_emb_dim=768,
batch_size=batch_size,
learning_rate=learning_rate,
join_embeddings=join_embeddings,
train_dataset=train_ds,
val_dataset=val_ds,
test_dataset=test_ds if test_df is not None else None,
disabled_embeddings=disabled_embeddings,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
trainer.fit(model)
metrics = trainer.validate(model, verbose=False)[0]
if test_df is not None:
test_metrics = trainer.test(model, verbose=False)[0]
metrics.update(test_metrics)
return model, trainer, metrics
# Setup hyperparameter optimization:
def objective(
trial,
train_df,
val_df,
hidden_dim_options,
batch_size_options,
learning_rate_options,
max_epochs_options,
smote_k_neighbors_options,
fast_dev_run=False,
use_ored_activity=True,
disabled_embeddings=[],
) -> float:
# Generate the hyperparameters
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
batch_size = trial.suggest_categorical('batch_size', batch_size_options)
learning_rate = trial.suggest_float('learning_rate', *learning_rate_options, log=True)
max_epochs = trial.suggest_categorical('max_epochs', max_epochs_options)
join_embeddings = trial.suggest_categorical('join_embeddings', ['concat', 'sum'])
smote_k_neighbors = trial.suggest_categorical('smote_k_neighbors', smote_k_neighbors_options)
# Train the model with the current set of hyperparameters
_, _, metrics = train_model(
train_df,
val_df,
hidden_dim=hidden_dim,
batch_size=batch_size,
join_embeddings=join_embeddings,
learning_rate=learning_rate,
max_epochs=max_epochs,
smote_k_neighbors=smote_k_neighbors,
use_logger=False,
fast_dev_run=fast_dev_run,
use_ored_activity=use_ored_activity,
disabled_embeddings=disabled_embeddings,
)
# Metrics is a dictionary containing at least the validation loss
val_loss = metrics['val_loss']
val_acc = metrics['val_acc']
val_roc_auc = metrics['val_roc_auc']
# Optuna aims to minimize the objective
return val_loss - val_acc - val_roc_auc
def hyperparameter_tuning_and_training(
train_df,
val_df,
test_df,
fast_dev_run=False,
n_trials=20,
logger_name='protac_hparam_search',
use_ored_activity=True,
disabled_embeddings=[],
) -> tuple:
""" Hyperparameter tuning and training of a PROTAC model.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
fast_dev_run (bool): Whether to run a fast development run.
Returns:
tuple: The trained model, the trainer, and the best metrics.
"""
# Define the search space
hidden_dim_options = [256, 512, 768]
batch_size_options = [8, 16, 32]
learning_rate_options = (1e-5, 1e-3) # min and max values for loguniform distribution
max_epochs_options = [10, 20, 50]
smote_k_neighbors_options = list(range(3, 16))
# Set the verbosity of Optuna
optuna.logging.set_verbosity(optuna.logging.WARNING)
# Create an Optuna study object
sampler = TPESampler(seed=42, multivariate=True)
study = optuna.create_study(direction='minimize', sampler=sampler)
study.optimize(
lambda trial: objective(
trial,
train_df,
val_df,
hidden_dim_options,
batch_size_options,
learning_rate_options,
max_epochs_options,
smote_k_neighbors_options=smote_k_neighbors_options,
fast_dev_run=fast_dev_run,
use_ored_activity=use_ored_activity,
disabled_embeddings=disabled_embeddings,
),
n_trials=n_trials,
)
# Retrain the model with the best hyperparameters
model, trainer, metrics = train_model(
train_df,
val_df,
test_df,
use_logger=True,
logger_name=logger_name,
fast_dev_run=fast_dev_run,
use_ored_activity=use_ored_activity,
disabled_embeddings=disabled_embeddings,
**study.best_params,
)
# Report the best hyperparameters found
metrics.update({f'hparam_{k}': v for k, v in study.best_params.items()})
# Return the best metrics
return model, trainer, metrics
def main(
use_ored_activity: bool = True,
n_trials: int = 50,
n_splits: int = 5,
fast_dev_run: bool = False,
):
""" Train a PROTAC model using the given datasets and hyperparameters.
Args:
use_ored_activity (bool): Whether to use the 'Active - OR' column.
n_trials (int): The number of hyperparameter optimization trials.
n_splits (int): The number of cross-validation splits.
fast_dev_run (bool): Whether to run a fast development run.
"""
## Set the Column to Predict
active_col = 'Active - OR' if use_ored_activity else 'Active'
active_name = active_col.replace(' ', '').lower()
active_name = 'active-and' if active_name == 'active' else active_name
## Test Sets
active_df = protac_df[protac_df[active_col].notna()]
# Before starting any training, we isolate a small group of test data. Each element in the test set is selected so that all the following conditions are met:
# * its SMILES appears only once in the dataframe
# * its Uniprot appears only once in the dataframe
# * its (Smiles, Uniprot) pair appears only once in the dataframe
unique_smiles = active_df['Smiles'].value_counts() == 1
unique_uniprot = active_df['Uniprot'].value_counts() == 1
unique_smiles_uniprot = active_df.groupby(['Smiles', 'Uniprot']).size() == 1
# Get the indices of the unique samples
unique_smiles_idx = active_df['Smiles'].map(unique_smiles)
unique_uniprot_idx = active_df['Uniprot'].map(unique_uniprot)
unique_smiles_uniprot_idx = active_df.set_index(['Smiles', 'Uniprot']).index.map(unique_smiles_uniprot)
# Cross the indices to get the unique samples
unique_samples = active_df[unique_smiles_idx & unique_uniprot_idx & unique_smiles_uniprot_idx].index
test_df = active_df.loc[unique_samples]
train_val_df = active_df[~active_df.index.isin(unique_samples)]
## Cross-Validation Training
# Cross validation training with 5 splits. The split operation is done in three different ways:
#
# * Random split
# * POI-wise: some POIs never in both splits
# * Least Tanimoto similarity PROTAC-wise
# NOTE: When set to 60, it will result in 29 groups, with nice distributions of
# the number of unique groups in the train and validation sets, together with
# the number of active and inactive PROTACs.
n_bins_tanimoto = 60 if active_col == 'Active' else 400
# Make directory ../reports if it does not exist
if not os.path.exists('../reports'):
os.makedirs('../reports')
# Seed everything in pytorch lightning
pl.seed_everything(42)
# Loop over the different splits and train the model:
report = []
for group_type in ['random', 'uniprot', 'tanimoto']:
print('-' * 100)
print(f'Starting CV for group type: {group_type}')
print('-' * 100)
# Setup CV iterator and groups
if group_type == 'random':
kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)
groups = None
elif group_type == 'uniprot':
# Split by Uniprot
kf = StratifiedGroupKFold(n_splits=n_splits, shuffle=True, random_state=42)
encoder = OrdinalEncoder()
groups = encoder.fit_transform(train_val_df['Uniprot'].values.reshape(-1, 1))
elif group_type == 'tanimoto':
# Split by tanimoto similarity, i.e., group_type PROTACs with similar Avg Tanimoto
kf = StratifiedGroupKFold(n_splits=n_splits, shuffle=True, random_state=42)
tanimoto_groups = pd.cut(train_val_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
groups = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1))
# Start the CV over the folds
X = train_val_df.drop(columns=active_col)
y = train_val_df[active_col].tolist()
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
print('-' * 100)
print(f'Starting CV for group type: {group_type}, fold: {k}')
print('-' * 100)
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
stats = {
'fold': k,
'group_type': group_type,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
'train_active_perc': train_df[active_col].sum() / len(train_df),
'train_inactive_perc': (len(train_df) - train_df[active_col].sum()) / len(train_df),
'val_active_perc': val_df[active_col].sum() / len(val_df),
'val_inactive_perc': (len(val_df) - val_df[active_col].sum()) / len(val_df),
'test_active_perc': test_df[active_col].sum() / len(test_df),
'test_inactive_perc': (len(test_df) - test_df[active_col].sum()) / len(test_df),
'num_leaking_uniprot': len(set(train_df['Uniprot']).intersection(set(val_df['Uniprot']))),
'num_leaking_smiles': len(set(train_df['Smiles']).intersection(set(val_df['Smiles']))),
'disabled_embeddings': np.nan,
}
if group_type != 'random':
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
# Train and evaluate the model
model, trainer, metrics = hyperparameter_tuning_and_training(
train_df,
val_df,
test_df,
fast_dev_run=fast_dev_run,
n_trials=n_trials,
logger_name=f'protac_{active_name}_{group_type}_fold_{k}',
use_ored_activity=use_ored_activity,
)
hparams = {p.strip('hparam_'): v for p, v in stats.items() if p.startswith('hparam_')}
stats.update(metrics)
report.append(stats.copy())
del model
del trainer
# Ablation study: disable embeddings at a time
for disabled_embeddings in [['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
print('-' * 100)
print(f'Ablation study with disabled embeddings: {disabled_embeddings}')
print('-' * 100)
stats['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
model, trainer, metrics = train_model(
train_df,
val_df,
test_df,
fast_dev_run=fast_dev_run,
logger_name=f'protac_{active_name}_{group_type}_fold_{k}_disabled-{"-".join(disabled_embeddings)}',
use_ored_activity=use_ored_activity,
disabled_embeddings=disabled_embeddings,
**hparams,
)
stats.update(metrics)
report.append(stats.copy())
del model
del trainer
report = pd.DataFrame(report)
report.to_csv(
f'../reports/cv_report_hparam_search_{n_splits}-splits_{active_name}.csv',
index=False,
)
if __name__ == '__main__':
cli = CLI(main) |