File size: 13,679 Bytes
33e3a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Copyright (c) 2022 NVIDIA CORPORATION. 
#   Licensed under the MIT license.

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

from util import weight_scaling_init


# Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch
# Original Copyright 2017 Victor Huang
#  MIT License (https://opensource.org/licenses/MIT)

class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):

        attn = torch.matmul(q / self.temperature, k.transpose(2, 3))

        if mask is not None:
            _MASKING_VALUE = -1e9 if attn.dtype == torch.float32 else -1e4
            attn = attn.masked_fill(mask == 0, _MASKING_VALUE)

        attn = self.dropout(F.softmax(attn, dim=-1))
        output = torch.matmul(attn, v)

        return output, attn


class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)


    def forward(self, q, k, v, mask=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)   # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        q = self.dropout(self.fc(q))
        q += residual

        q = self.layer_norm(q)

        return q, attn


class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid) # position-wise
        self.w_2 = nn.Linear(d_hid, d_in) # position-wise
        self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):

        residual = x

        x = self.w_2(F.relu(self.w_1(x)))
        x = self.dropout(x)
        x += residual

        x = self.layer_norm(x)

        return x


def get_subsequent_mask(seq):
    ''' For masking out the subsequent info. '''
    sz_b, len_s = seq.size()
    subsequent_mask = (1 - torch.triu(
        torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
    return subsequent_mask


class PositionalEncoding(nn.Module):

    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()

        # Not a parameter
        self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        ''' Sinusoid position encoding table '''
        # TODO: make it with torch instead of numpy

        def get_position_angle_vec(position):
            return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        return torch.FloatTensor(sinusoid_table).unsqueeze(0)

    def forward(self, x):
        return x + self.pos_table[:, :x.size(1)].clone().detach()


class EncoderLayer(nn.Module):
    ''' Compose with two layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0):
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None):
        enc_output, enc_slf_attn = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask)
        enc_output = self.pos_ffn(enc_output)
        return enc_output, enc_slf_attn


class TransformerEncoder(nn.Module):
    ''' A encoder model with self attention mechanism. '''

    def __init__(

            self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64,

            d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False):

        super().__init__()

        # self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx)
        if n_position > 0:
            self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
        else:
            self.position_enc = lambda x: x
        self.dropout = nn.Dropout(p=dropout)
        self.layer_stack = nn.ModuleList([
            EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
        self.scale_emb = scale_emb
        self.d_model = d_model

    def forward(self, src_seq, src_mask, return_attns=False):

        enc_slf_attn_list = []

        # -- Forward
        # enc_output = self.src_word_emb(src_seq)
        enc_output = src_seq
        if self.scale_emb:
            enc_output *= self.d_model ** 0.5
        enc_output = self.dropout(self.position_enc(enc_output))
        enc_output = self.layer_norm(enc_output)

        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
            enc_slf_attn_list += [enc_slf_attn] if return_attns else []

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output


# CleanUNet architecture


def padding(x, D, K, S):
    """padding zeroes to x so that denoised audio has the same length"""

    L = x.shape[-1]
    for _ in range(D):
        if L < K:
            L = 1
        else:
            L = 1 + np.ceil((L - K) / S)

    for _ in range(D):
        L = (L - 1) * S + K
    
    L = int(L)
    x = F.pad(x, (0, L - x.shape[-1]))
    return x


class CleanUNet(nn.Module):
    """ CleanUNet architecture. """

    def __init__(self, channels_input=1, channels_output=1,

                 channels_H=64, max_H=768,

                 encoder_n_layers=8, kernel_size=4, stride=2,

                 tsfm_n_layers=3, 

                 tsfm_n_head=8,

                 tsfm_d_model=512, 

                 tsfm_d_inner=2048):
        
        """

        Parameters:

        channels_input (int):   input channels

        channels_output (int):  output channels

        channels_H (int):       middle channels H that controls capacity

        max_H (int):            maximum H

        encoder_n_layers (int): number of encoder/decoder layers D

        kernel_size (int):      kernel size K

        stride (int):           stride S

        tsfm_n_layers (int):    number of self attention blocks N

        tsfm_n_head (int):      number of heads in each self attention block

        tsfm_d_model (int):     d_model of self attention

        tsfm_d_inner (int):     d_inner of self attention

        """

        super(CleanUNet, self).__init__()

        self.channels_input = channels_input
        self.channels_output = channels_output
        self.channels_H = channels_H
        self.max_H = max_H
        self.encoder_n_layers = encoder_n_layers
        self.kernel_size = kernel_size
        self.stride = stride

        self.tsfm_n_layers = tsfm_n_layers
        self.tsfm_n_head = tsfm_n_head
        self.tsfm_d_model = tsfm_d_model
        self.tsfm_d_inner = tsfm_d_inner

        # encoder and decoder
        self.encoder = nn.ModuleList()
        self.decoder = nn.ModuleList()

        for i in range(encoder_n_layers):
            self.encoder.append(nn.Sequential(
                nn.Conv1d(channels_input, channels_H, kernel_size, stride),
                nn.ReLU(),
                nn.Conv1d(channels_H, channels_H * 2, 1), 
                nn.GLU(dim=1)
            ))
            channels_input = channels_H

            if i == 0:
                # no relu at end
                self.decoder.append(nn.Sequential(
                    nn.Conv1d(channels_H, channels_H * 2, 1), 
                    nn.GLU(dim=1),
                    nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride)
                ))
            else:
                self.decoder.insert(0, nn.Sequential(
                    nn.Conv1d(channels_H, channels_H * 2, 1), 
                    nn.GLU(dim=1),
                    nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride),
                    nn.ReLU()
                ))
            channels_output = channels_H
            
            # double H but keep below max_H
            channels_H *= 2
            channels_H = min(channels_H, max_H)
        
        # self attention block
        self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1)
        self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model, 
                                               n_layers=tsfm_n_layers, 
                                               n_head=tsfm_n_head, 
                                               d_k=tsfm_d_model // tsfm_n_head, 
                                               d_v=tsfm_d_model // tsfm_n_head, 
                                               d_model=tsfm_d_model, 
                                               d_inner=tsfm_d_inner, 
                                               dropout=0.0, 
                                               n_position=0, 
                                               scale_emb=False)
        self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1)

        # weight scaling initialization
        for layer in self.modules():
            if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
                weight_scaling_init(layer)

    def forward(self, noisy_audio):
        # (B, L) -> (B, C, L)
        if len(noisy_audio.shape) == 2:
            noisy_audio = noisy_audio.unsqueeze(1)
        B, C, L = noisy_audio.shape
        assert C == 1
        
        # normalization and padding
        std = noisy_audio.std(dim=2, keepdim=True) + 1e-3
        noisy_audio /= std
        x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride)
        
        # encoder
        skip_connections = []
        for downsampling_block in self.encoder:
            x = downsampling_block(x)
            skip_connections.append(x)
        skip_connections = skip_connections[::-1]

        # attention mask for causal inference; for non-causal, set attn_mask to None
        len_s = x.shape[-1]  # length at bottleneck
        attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool()

        x = self.tsfm_conv1(x)  # C 1024 -> 512
        x = x.permute(0, 2, 1)
        x = self.tsfm_encoder(x, src_mask=attn_mask)
        x = x.permute(0, 2, 1)
        x = self.tsfm_conv2(x)  # C 512 -> 1024

        # decoder
        for i, upsampling_block in enumerate(self.decoder):
            skip_i = skip_connections[i]
            x += skip_i[:, :, :x.shape[-1]]
            x = upsampling_block(x)

        x = x[:, :, :L] * std
        return x


if __name__ == '__main__':
    import json
    import argparse 
    import os

    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json', 
                        help='JSON file for configuration')
    args = parser.parse_args()

    with open(args.config) as f:
        data = f.read()
    config = json.loads(data)
    network_config = config["network_config"]

    model = CleanUNet(**network_config).cuda()
    from util import print_size
    print_size(model, keyword="tsfm")
    
    input_data = torch.ones([4,1,int(4.5*16000)]).cuda()
    output = model(input_data)
    print(output.shape)

    y = torch.rand([4,1,int(4.5*16000)]).cuda()
    loss = torch.nn.MSELoss()(y, output)
    loss.backward()
    print(loss.item())