Update app.py
Browse files
app.py
CHANGED
@@ -6,43 +6,62 @@ from functools import lru_cache
|
|
6 |
from PIL import Image
|
7 |
import cv2
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# OpenAI
|
11 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
12 |
ANALYSIS_MODEL = "gpt-4o"
|
13 |
MAX_TOKENS = 4096
|
|
|
14 |
|
15 |
-
# Persona
|
16 |
PERSONAS = {
|
17 |
"Aggressive Trader": {
|
18 |
"description": "High-risk, short-term gains, leverages volatile market movements.",
|
19 |
-
"prompt": "Focus on high-risk strategies, short-term gains, and leverage opportunities. Suggest aggressive entry and exit points."
|
|
|
20 |
},
|
21 |
"Conservative Trader": {
|
22 |
"description": "Low-risk, long-term investments, prioritizes capital preservation.",
|
23 |
-
"prompt": "Focus on low-risk strategies, long-term investments, and capital preservation. Suggest safe entry points and strict stop-loss levels."
|
|
|
24 |
},
|
25 |
"Neutral Trader": {
|
26 |
"description": "Balanced approach, combines short and long-term strategies.",
|
27 |
-
"prompt": "Focus on balanced strategies, combining short and long-term opportunities. Suggest moderate risk levels and trend-following approaches."
|
|
|
28 |
},
|
29 |
"Reactive Trader": {
|
30 |
"description": "Quick decisions based on market news and social media trends.",
|
31 |
-
"prompt": "Focus on quick decision-making, momentum trading, and reacting to market news. Suggest strategies based on current trends and FOMO opportunities."
|
|
|
32 |
},
|
33 |
"Systematic Trader": {
|
34 |
"description": "Algorithm-based, rule-driven, and emotionless trading.",
|
35 |
-
"prompt": "Focus on algorithmic strategies, backtested rules, and quantitative analysis. Suggest data-driven entry and exit points."
|
|
|
36 |
}
|
37 |
}
|
38 |
|
39 |
-
#
|
40 |
SYSTEM_PROMPT = """Professional Crypto Technical Analyst:
|
41 |
1. Identify all technical patterns in the chart
|
42 |
2. Determine key support/resistance levels
|
43 |
3. Analyze volume and momentum indicators
|
44 |
4. Calculate risk/reward ratios
|
45 |
-
5. Provide clear trading recommendations
|
46 |
6. Include specific price targets
|
47 |
7. Assess market sentiment
|
48 |
8. Evaluate trend strength
|
@@ -52,276 +71,221 @@ SYSTEM_PROMPT = """Professional Crypto Technical Analyst:
|
|
52 |
class ChartAnalyzer:
|
53 |
def __init__(self):
|
54 |
self.last_analysis = ""
|
|
|
55 |
|
56 |
def validate_image(self, image_path: str) -> bool:
|
57 |
-
"""Validate if the uploaded file is a valid image and looks like a chart"""
|
58 |
try:
|
59 |
-
# Check if the file is an image
|
60 |
with Image.open(image_path) as img:
|
61 |
-
img.verify()
|
62 |
|
63 |
-
# Check if the image looks like a chart (basic check)
|
64 |
img = cv2.imread(image_path)
|
65 |
if img is None:
|
66 |
return False
|
67 |
|
68 |
-
# Simple check for chart-like features (e.g., axes, grid lines)
|
69 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
70 |
edges = cv2.Canny(gray, 50, 150)
|
71 |
-
|
72 |
-
return False
|
73 |
-
|
74 |
-
return True
|
75 |
except Exception:
|
76 |
return False
|
77 |
|
78 |
def optimize_image(self, image_path: str) -> str:
|
79 |
-
"""Optimize image size and quality"""
|
80 |
try:
|
81 |
img = Image.open(image_path)
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
img.save(optimized_path, "PNG", optimize=True, quality=85)
|
88 |
return optimized_path
|
89 |
except Exception as e:
|
90 |
print(f"Image optimization error: {str(e)}")
|
91 |
-
return image_path
|
92 |
|
93 |
def encode_image(self, image_path: str) -> str:
|
94 |
-
"""Encode image to base64 with validation"""
|
95 |
if not os.path.exists(image_path):
|
96 |
raise FileNotFoundError("File not found")
|
97 |
-
|
98 |
-
raise ValueError("Unsupported file format")
|
99 |
if os.path.getsize(image_path) > 5 * 1024 * 1024:
|
100 |
raise ValueError("Maximum file size is 5MB")
|
101 |
|
102 |
with open(image_path, "rb") as image_file:
|
103 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
104 |
|
105 |
-
@lru_cache(maxsize=100)
|
106 |
def analyze_chart(self, image_path: str, persona: str) -> str:
|
107 |
-
"""Core analysis function with caching and persona-based recommendations"""
|
108 |
try:
|
109 |
-
# Optimize image before analysis
|
110 |
optimized_path = self.optimize_image(image_path)
|
111 |
base64_image = self.encode_image(optimized_path)
|
112 |
|
113 |
-
# Add persona-specific instructions to the system prompt
|
114 |
persona_prompt = PERSONAS.get(persona, {}).get("prompt", "")
|
115 |
full_system_prompt = f"{SYSTEM_PROMPT}\n\n{persona_prompt}"
|
116 |
|
117 |
response = openai.ChatCompletion.create(
|
118 |
model=ANALYSIS_MODEL,
|
119 |
messages=[
|
120 |
-
{
|
121 |
-
|
122 |
-
"
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
"content": [
|
127 |
-
{"type": "text", "text": "Perform detailed technical analysis of this chart:"},
|
128 |
-
{
|
129 |
-
"type": "image_url",
|
130 |
-
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}
|
131 |
-
}
|
132 |
-
]
|
133 |
-
}
|
134 |
],
|
135 |
max_tokens=MAX_TOKENS
|
136 |
)
|
137 |
|
138 |
-
|
|
|
|
|
139 |
|
140 |
-
except openai.error.APIError as e:
|
141 |
-
return f"OpenAI API Error: {str(e)}"
|
142 |
except Exception as e:
|
143 |
-
return f"
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
background-color: white;
|
168 |
-
border-radius: 12px;
|
169 |
-
padding: 24px;
|
170 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
171 |
-
border: 1px solid var(--border-color);
|
172 |
-
height: 400px; /* Initial height */
|
173 |
-
overflow-y: auto;
|
174 |
-
width: 100%;
|
175 |
-
transition: height 0.3s ease;
|
176 |
-
}
|
177 |
-
|
178 |
-
.upload-box {
|
179 |
-
background-color: white;
|
180 |
-
border-radius: 12px;
|
181 |
-
padding: 24px;
|
182 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
183 |
-
border: 1px solid var(--border-color);
|
184 |
-
width: 100%;
|
185 |
-
}
|
186 |
-
|
187 |
-
.primary-button {
|
188 |
-
background-color: var(--primary-color) !important;
|
189 |
-
color: white !important;
|
190 |
-
border-radius: 8px !important;
|
191 |
-
padding: 12px 24px !important;
|
192 |
-
font-weight: 500 !important;
|
193 |
-
width: 100%;
|
194 |
-
}
|
195 |
-
|
196 |
-
.primary-button:hover {
|
197 |
-
background-color: var(--secondary-color) !important;
|
198 |
-
}
|
199 |
-
|
200 |
-
.markdown-container {
|
201 |
-
max-width: 100%;
|
202 |
-
margin: 0 auto;
|
203 |
-
padding: 0 15px;
|
204 |
-
word-wrap: break-word;
|
205 |
-
}
|
206 |
-
|
207 |
-
.loading-container {
|
208 |
-
display: flex;
|
209 |
-
justify-content: center;
|
210 |
-
align-items: center;
|
211 |
-
height: 100%;
|
212 |
-
}
|
213 |
-
|
214 |
-
.loading-text {
|
215 |
-
color: var(--primary-color);
|
216 |
-
font-size: 1.2rem;
|
217 |
-
text-align: center;
|
218 |
-
margin-top: 2rem;
|
219 |
-
}
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
240 |
|
241 |
-
.
|
242 |
-
|
243 |
-
min-width: 300px;
|
244 |
-
}
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
#
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
263 |
"""
|
264 |
|
265 |
-
# Gradio Interface
|
266 |
-
analyzer = ChartAnalyzer()
|
267 |
-
|
268 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
269 |
-
|
|
|
270 |
with gr.Column(elem_classes=["container"]):
|
271 |
-
gr.Markdown("""
|
272 |
-
<div style="text-align: center; margin-bottom: 32px;">
|
273 |
-
<h1 style="color: var(--primary-color); font-size: 2.5rem; margin-bottom: 16px;">
|
274 |
-
🚀 CryptoVision Pro
|
275 |
-
</h1>
|
276 |
-
<p style="color: var(--text-color); font-size: 1.1rem;">
|
277 |
-
Advanced AI-powered cryptocurrency technical analysis
|
278 |
-
</p>
|
279 |
-
</div>
|
280 |
-
""")
|
281 |
|
282 |
-
# Main Content
|
283 |
with gr.Row():
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
gr.
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
)
|
294 |
-
persona_dropdown = gr.Dropdown(
|
295 |
-
choices=list(PERSONAS.keys()),
|
296 |
-
label="Select Trading Persona",
|
297 |
-
value="Neutral Trader"
|
298 |
-
)
|
299 |
-
analyze_btn = gr.Button(
|
300 |
-
"Analyze Chart",
|
301 |
-
variant="primary",
|
302 |
-
elem_classes=["primary-button"]
|
303 |
-
)
|
304 |
-
|
305 |
-
# Analysis Column
|
306 |
-
with gr.Column(elem_classes=["column"]):
|
307 |
-
with gr.Column(elem_classes=["analysis-box"]):
|
308 |
-
gr.Markdown("### 📊 Analysis Report")
|
309 |
-
analysis_output = gr.Markdown(
|
310 |
-
label="",
|
311 |
-
value="Analysis report will appear here",
|
312 |
-
elem_classes=["markdown-container"]
|
313 |
-
)
|
314 |
|
315 |
-
# Event Handling
|
316 |
analyze_btn.click(
|
317 |
-
|
318 |
-
outputs=analysis_output,
|
319 |
queue=False
|
320 |
).then(
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
)
|
326 |
|
327 |
if __name__ == "__main__":
|
|
|
6 |
from PIL import Image
|
7 |
import cv2
|
8 |
import numpy as np
|
9 |
+
import datetime
|
10 |
+
import uuid
|
11 |
+
import requests
|
12 |
+
from reportlab.lib.pagesizes import letter
|
13 |
+
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
|
14 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
15 |
+
from reportlab.lib.enums import TA_JUSTIFY
|
16 |
+
from reportlab.lib import colors
|
17 |
|
18 |
+
# OpenAI ve GitHub Konfigürasyonları
|
19 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
20 |
+
GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
|
21 |
+
REPO_OWNER = os.getenv("GITHUB_REPO_OWNER")
|
22 |
+
REPO_NAME = os.getenv("GITHUB_REPO_NAME")
|
23 |
+
|
24 |
+
# Sabitler
|
25 |
ANALYSIS_MODEL = "gpt-4o"
|
26 |
MAX_TOKENS = 4096
|
27 |
+
PDF_DIR = "reports"
|
28 |
|
29 |
+
# Persona Tanımları
|
30 |
PERSONAS = {
|
31 |
"Aggressive Trader": {
|
32 |
"description": "High-risk, short-term gains, leverages volatile market movements.",
|
33 |
+
"prompt": "Focus on high-risk strategies, short-term gains, and leverage opportunities. Suggest aggressive entry and exit points.",
|
34 |
+
"color": colors.red
|
35 |
},
|
36 |
"Conservative Trader": {
|
37 |
"description": "Low-risk, long-term investments, prioritizes capital preservation.",
|
38 |
+
"prompt": "Focus on low-risk strategies, long-term investments, and capital preservation. Suggest safe entry points and strict stop-loss levels.",
|
39 |
+
"color": colors.blue
|
40 |
},
|
41 |
"Neutral Trader": {
|
42 |
"description": "Balanced approach, combines short and long-term strategies.",
|
43 |
+
"prompt": "Focus on balanced strategies, combining short and long-term opportunities. Suggest moderate risk levels and trend-following approaches.",
|
44 |
+
"color": colors.green
|
45 |
},
|
46 |
"Reactive Trader": {
|
47 |
"description": "Quick decisions based on market news and social media trends.",
|
48 |
+
"prompt": "Focus on quick decision-making, momentum trading, and reacting to market news. Suggest strategies based on current trends and FOMO opportunities.",
|
49 |
+
"color": colors.orange
|
50 |
},
|
51 |
"Systematic Trader": {
|
52 |
"description": "Algorithm-based, rule-driven, and emotionless trading.",
|
53 |
+
"prompt": "Focus on algorithmic strategies, backtested rules, and quantitative analysis. Suggest data-driven entry and exit points.",
|
54 |
+
"color": colors.purple
|
55 |
}
|
56 |
}
|
57 |
|
58 |
+
# Sistem Prompt'u
|
59 |
SYSTEM_PROMPT = """Professional Crypto Technical Analyst:
|
60 |
1. Identify all technical patterns in the chart
|
61 |
2. Determine key support/resistance levels
|
62 |
3. Analyze volume and momentum indicators
|
63 |
4. Calculate risk/reward ratios
|
64 |
+
5. Provide clear trading recommendations
|
65 |
6. Include specific price targets
|
66 |
7. Assess market sentiment
|
67 |
8. Evaluate trend strength
|
|
|
71 |
class ChartAnalyzer:
|
72 |
def __init__(self):
|
73 |
self.last_analysis = ""
|
74 |
+
os.makedirs(PDF_DIR, exist_ok=True)
|
75 |
|
76 |
def validate_image(self, image_path: str) -> bool:
|
|
|
77 |
try:
|
|
|
78 |
with Image.open(image_path) as img:
|
79 |
+
img.verify()
|
80 |
|
|
|
81 |
img = cv2.imread(image_path)
|
82 |
if img is None:
|
83 |
return False
|
84 |
|
|
|
85 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
86 |
edges = cv2.Canny(gray, 50, 150)
|
87 |
+
return np.sum(edges) >= 1000
|
|
|
|
|
|
|
88 |
except Exception:
|
89 |
return False
|
90 |
|
91 |
def optimize_image(self, image_path: str) -> str:
|
|
|
92 |
try:
|
93 |
img = Image.open(image_path)
|
94 |
+
original_width, original_height = img.size
|
95 |
+
max_size = 1024
|
96 |
+
|
97 |
+
if original_width > max_size or original_height > max_size:
|
98 |
+
ratio = min(max_size/original_width, max_size/original_height)
|
99 |
+
new_size = (int(original_width * ratio), int(original_height * ratio))
|
100 |
+
img = img.resize(new_size, Image.LANCZOS)
|
101 |
+
|
102 |
+
unique_id = uuid.uuid4().hex
|
103 |
+
optimized_path = f"{PDF_DIR}/optimized_chart_{unique_id}.png"
|
104 |
img.save(optimized_path, "PNG", optimize=True, quality=85)
|
105 |
return optimized_path
|
106 |
except Exception as e:
|
107 |
print(f"Image optimization error: {str(e)}")
|
108 |
+
return image_path
|
109 |
|
110 |
def encode_image(self, image_path: str) -> str:
|
|
|
111 |
if not os.path.exists(image_path):
|
112 |
raise FileNotFoundError("File not found")
|
113 |
+
|
|
|
114 |
if os.path.getsize(image_path) > 5 * 1024 * 1024:
|
115 |
raise ValueError("Maximum file size is 5MB")
|
116 |
|
117 |
with open(image_path, "rb") as image_file:
|
118 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
119 |
|
120 |
+
@lru_cache(maxsize=100)
|
121 |
def analyze_chart(self, image_path: str, persona: str) -> str:
|
|
|
122 |
try:
|
|
|
123 |
optimized_path = self.optimize_image(image_path)
|
124 |
base64_image = self.encode_image(optimized_path)
|
125 |
|
|
|
126 |
persona_prompt = PERSONAS.get(persona, {}).get("prompt", "")
|
127 |
full_system_prompt = f"{SYSTEM_PROMPT}\n\n{persona_prompt}"
|
128 |
|
129 |
response = openai.ChatCompletion.create(
|
130 |
model=ANALYSIS_MODEL,
|
131 |
messages=[
|
132 |
+
{"role": "system", "content": full_system_prompt},
|
133 |
+
{"role": "user", "content": [
|
134 |
+
{"type": "text", "text": "Perform detailed technical analysis of this chart:"},
|
135 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}
|
136 |
+
}
|
137 |
+
]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
],
|
139 |
max_tokens=MAX_TOKENS
|
140 |
)
|
141 |
|
142 |
+
analysis_text = response.choices[0].message.content
|
143 |
+
self.last_analysis = analysis_text
|
144 |
+
return analysis_text
|
145 |
|
|
|
|
|
146 |
except Exception as e:
|
147 |
+
return f"Error: {str(e)}"
|
148 |
|
149 |
+
def create_pdf_styles():
|
150 |
+
styles = getSampleStyleSheet()
|
151 |
+
styles.add(ParagraphStyle(
|
152 |
+
'Justify',
|
153 |
+
parent=styles['BodyText'],
|
154 |
+
alignment=TA_JUSTIFY,
|
155 |
+
spaceAfter=6
|
156 |
+
))
|
157 |
+
styles.add(ParagraphStyle(
|
158 |
+
'PersonaTitle',
|
159 |
+
fontSize=14,
|
160 |
+
textColor=colors.white,
|
161 |
+
backColor=colors.darkblue,
|
162 |
+
alignment=1,
|
163 |
+
spaceAfter=12
|
164 |
+
))
|
165 |
+
return styles
|
166 |
|
167 |
+
def generate_pdf(image_path: str, analysis_text: str, persona: str) -> str:
|
168 |
+
styles = create_pdf_styles()
|
169 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
170 |
+
filename = f"{PDF_DIR}/report_{timestamp}_{uuid.uuid4().hex[:6]}.pdf"
|
171 |
+
|
172 |
+
doc = SimpleDocTemplate(filename, pagesize=letter)
|
173 |
+
story = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
# Resim ekleme
|
176 |
+
try:
|
177 |
+
img = Image.open(image_path)
|
178 |
+
img_width, img_height = img.size
|
179 |
+
aspect = img_height / float(img_width)
|
180 |
+
target_width = 400
|
181 |
+
target_height = target_width * aspect
|
182 |
+
|
183 |
+
if target_height > 600:
|
184 |
+
target_height = 600
|
185 |
+
target_width = target_height / aspect
|
186 |
+
|
187 |
+
story.append(RLImage(image_path, width=target_width, height=target_height))
|
188 |
+
story.append(Spacer(1, 20))
|
189 |
+
except Exception as e:
|
190 |
+
print(f"PDF image error: {str(e)}")
|
191 |
|
192 |
+
# Persona bilgisi
|
193 |
+
persona_color = PERSONAS.get(persona, {}).get("color", colors.black)
|
194 |
+
story.append(Paragraph(f"Persona: {persona}", ParagraphStyle(
|
195 |
+
'PersonaTitle',
|
196 |
+
fontSize=14,
|
197 |
+
textColor=colors.white,
|
198 |
+
backColor=persona_color,
|
199 |
+
alignment=1
|
200 |
+
)))
|
201 |
+
story.append(Spacer(1, 20))
|
202 |
|
203 |
+
# Analiz metni
|
204 |
+
analysis_style = styles['Justify']
|
205 |
+
for line in analysis_text.split('\n'):
|
206 |
+
if line.strip():
|
207 |
+
p = Paragraph(line.replace('•', '•'), analysis_style)
|
208 |
+
story.append(p)
|
209 |
+
story.append(Spacer(1, 12))
|
210 |
|
211 |
+
doc.build(story)
|
212 |
+
return filename
|
|
|
|
|
213 |
|
214 |
+
def upload_to_github(file_path: str) -> bool:
|
215 |
+
try:
|
216 |
+
with open(file_path, "rb") as f:
|
217 |
+
content = f.read()
|
218 |
+
|
219 |
+
file_name = os.path.basename(file_path)
|
220 |
+
url = f"https://api.github.com/repos/{REPO_OWNER}/{REPO_NAME}/contents/{PDF_DIR}/{file_name}"
|
221 |
+
|
222 |
+
headers = {
|
223 |
+
"Authorization": f"token {GITHUB_TOKEN}",
|
224 |
+
"Accept": "application/vnd.github.v3+json"
|
225 |
+
}
|
226 |
+
|
227 |
+
# Check if file exists
|
228 |
+
response = requests.get(url, headers=headers)
|
229 |
+
sha = response.json().get("sha") if response.status_code == 200 else None
|
230 |
+
|
231 |
+
data = {
|
232 |
+
"message": f"Add report {file_name}",
|
233 |
+
"content": base64.b64encode(content).decode("utf-8"),
|
234 |
+
"branch": "main"
|
235 |
+
}
|
236 |
+
|
237 |
+
if sha:
|
238 |
+
data["sha"] = sha
|
239 |
+
|
240 |
+
response = requests.put(url, headers=headers, json=data)
|
241 |
+
return response.status_code in [200, 201]
|
242 |
+
except Exception as e:
|
243 |
+
print(f"GitHub upload error: {str(e)}")
|
244 |
+
return False
|
245 |
|
246 |
+
# Gradio Arayüzü
|
247 |
+
custom_css = """
|
248 |
+
:root { --primary-color: #2563eb; --secondary-color: #1e40af; }
|
249 |
+
.container { max-width: 1200px; margin: 0 auto; }
|
250 |
+
.analysis-box { background: white; border-radius: 12px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
|
251 |
+
.loading-spinner { border: 4px solid #f3f3f3; border-top: 4px solid var(--primary-color); }
|
252 |
+
@keyframes spin { 0% { transform: rotate(0deg); } 100% { transform: rotate(360deg); } }
|
253 |
"""
|
254 |
|
|
|
|
|
|
|
255 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
256 |
+
analyzer = ChartAnalyzer()
|
257 |
+
|
258 |
with gr.Column(elem_classes=["container"]):
|
259 |
+
gr.Markdown("""<div style="text-align: center;"><h1>🚀 CryptoVision Pro</h1></div>""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
|
|
261 |
with gr.Row():
|
262 |
+
with gr.Column():
|
263 |
+
with gr.Box(elem_classes=["analysis-box"]):
|
264 |
+
chart_input = gr.Image(type="filepath", label="Chart", sources=["upload"])
|
265 |
+
persona_dropdown = gr.Dropdown(list(PERSONAS.keys()), label="Trading Persona", value="Neutral Trader")
|
266 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
267 |
+
|
268 |
+
with gr.Column():
|
269 |
+
with gr.Box(elem_classes=["analysis-box"]):
|
270 |
+
analysis_output = gr.Markdown("Analysis will appear here...")
|
271 |
+
pdf_status = gr.HTML()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
|
|
273 |
analyze_btn.click(
|
274 |
+
lambda: (gr.update(visible=False), gr.update(value="<div class='loading-spinner'></div>")),
|
275 |
+
outputs=[analysis_output, pdf_status],
|
276 |
queue=False
|
277 |
).then(
|
278 |
+
analyzer.analyze_chart,
|
279 |
+
[chart_input, persona_dropdown],
|
280 |
+
analysis_output
|
281 |
+
).then(
|
282 |
+
lambda img, text, persona: generate_pdf(img, text, persona),
|
283 |
+
[chart_input, analysis_output, persona_dropdown],
|
284 |
+
None
|
285 |
+
).then(
|
286 |
+
lambda path: upload_to_github(path) if all([GITHUB_TOKEN, REPO_OWNER, REPO_NAME]) else None,
|
287 |
+
None,
|
288 |
+
pdf_status
|
289 |
)
|
290 |
|
291 |
if __name__ == "__main__":
|