Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
import openai
|
3 |
import os
|
4 |
-
import cv2
|
5 |
-
import numpy as np
|
6 |
import base64
|
7 |
-
import
|
8 |
-
from typing import Tuple, Dict, Any
|
9 |
-
from datetime import datetime
|
10 |
|
11 |
# OpenAI API Configuration
|
12 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
13 |
ANALYSIS_MODEL = "gpt-4o"
|
14 |
MAX_TOKENS = 4096
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
class ChartAnalyzer:
|
17 |
def __init__(self):
|
18 |
-
self.last_analysis =
|
19 |
|
20 |
def encode_image(self, image_path: str) -> str:
|
21 |
"""Encode image to base64 with validation"""
|
@@ -23,147 +32,31 @@ class ChartAnalyzer:
|
|
23 |
raise FileNotFoundError("File not found")
|
24 |
if not image_path.lower().endswith(('.png', '.jpg', '.jpeg')):
|
25 |
raise ValueError("Unsupported file format")
|
|
|
|
|
26 |
|
27 |
with open(image_path, "rb") as image_file:
|
28 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
29 |
|
30 |
-
def
|
31 |
-
"""
|
32 |
-
data = {
|
33 |
-
'current_price': None,
|
34 |
-
'support_levels': [],
|
35 |
-
'resistance_levels': [],
|
36 |
-
'patterns': [],
|
37 |
-
'timeframe': None
|
38 |
-
}
|
39 |
-
|
40 |
-
# Improved price extraction with currency symbols
|
41 |
-
price_match = re.search(r'(?:\$|€|£)?(\d+\.?\d*)', analysis_text)
|
42 |
-
if price_match:
|
43 |
-
try:
|
44 |
-
data['current_price'] = float(price_match.group(1))
|
45 |
-
except ValueError:
|
46 |
-
pass
|
47 |
-
|
48 |
-
# Enhanced timeframe detection
|
49 |
-
timeframe_pattern = r'(?:timeframe|period|chart)\s*(?:is|shows|of)\s*([1-9][0-9]*[mhDWMY])'
|
50 |
-
timeframe_match = re.search(timeframe_pattern, analysis_text, re.IGNORECASE)
|
51 |
-
if timeframe_match:
|
52 |
-
data['timeframe'] = timeframe_match.group(1)
|
53 |
-
|
54 |
-
# Pattern detection with variations
|
55 |
-
patterns = {
|
56 |
-
'triangle': r'triangle|symmetrical|ascending|descending',
|
57 |
-
'wedge': r'wedge|rising wedge|falling wedge',
|
58 |
-
'head and shoulders': r'head\s*and\s*shoulders|H&S',
|
59 |
-
'flag': r'flag|bull flag|bear flag',
|
60 |
-
'double top': r'double top|M pattern',
|
61 |
-
'double bottom': r'double bottom|W pattern'
|
62 |
-
}
|
63 |
-
|
64 |
-
for pattern_name, pattern_regex in patterns.items():
|
65 |
-
if re.search(pattern_regex, analysis_text, re.IGNORECASE):
|
66 |
-
data['patterns'].append(pattern_name)
|
67 |
-
|
68 |
-
# Level extraction with multiple formats
|
69 |
-
level_pattern = r'(support|resistance)\s*(?:at|level:?)\s*\$?(\d+\.?\d*)'
|
70 |
-
levels = re.findall(level_pattern, analysis_text, re.IGNORECASE)
|
71 |
-
for level_type, value in levels:
|
72 |
-
try:
|
73 |
-
numeric_value = float(value)
|
74 |
-
if level_type.lower() == 'support':
|
75 |
-
data['support_levels'].append(numeric_value)
|
76 |
-
else:
|
77 |
-
data['resistance_levels'].append(numeric_value)
|
78 |
-
except ValueError:
|
79 |
-
pass
|
80 |
-
|
81 |
-
return data
|
82 |
-
|
83 |
-
def calculate_confidence(self, analysis_text: str) -> float:
|
84 |
-
"""Dynamic confidence calculation"""
|
85 |
-
confidence_signals = {
|
86 |
-
r'\bclear pattern\b': 0.3,
|
87 |
-
r'\bstrong volume\b': 0.2,
|
88 |
-
r'\bkey level (break|test)\b': 0.25,
|
89 |
-
r'\bmultiple indicators\b': 0.15,
|
90 |
-
r'\balignment with\b': 0.1
|
91 |
-
}
|
92 |
-
|
93 |
-
confidence = 0.0
|
94 |
-
for pattern, value in confidence_signals.items():
|
95 |
-
if re.search(pattern, analysis_text, re.IGNORECASE):
|
96 |
-
confidence += value
|
97 |
-
|
98 |
-
return min(max(confidence, 0.0), 1.0)
|
99 |
-
|
100 |
-
def generate_annotations(self, img: np.ndarray, analysis: Dict) -> np.ndarray:
|
101 |
-
"""Advanced chart annotations"""
|
102 |
-
h, w = img.shape[:2]
|
103 |
-
overlay = img.copy()
|
104 |
-
|
105 |
-
# Dynamic trend lines based on patterns
|
106 |
-
if any(p in analysis['patterns'] for p in ['triangle', 'wedge']):
|
107 |
-
cv2.line(overlay, (w//4, h//4), (3*w//4, 3*h//4), (0,255,255), 2)
|
108 |
-
|
109 |
-
# Support/resistance zones with labels
|
110 |
-
for i, level in enumerate(analysis['support_levels']):
|
111 |
-
y_pos = int(h * 0.85 - i*20)
|
112 |
-
cv2.line(overlay, (0, y_pos), (w, y_pos), (0,255,0), 2)
|
113 |
-
cv2.putText(overlay, f"S: {level}", (10, y_pos-5),
|
114 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1)
|
115 |
-
|
116 |
-
for i, level in enumerate(analysis['resistance_levels']):
|
117 |
-
y_pos = int(h * 0.15 + i*20)
|
118 |
-
cv2.line(overlay, (0, y_pos), (w, y_pos), (0,0,255), 2)
|
119 |
-
cv2.putText(overlay, f"R: {level}", (10, y_pos+15),
|
120 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 1)
|
121 |
-
|
122 |
-
# Confidence meter with percentage
|
123 |
-
confidence = self.calculate_confidence(analysis['raw_text'])
|
124 |
-
cv2.rectangle(overlay, (w-150, 20), (w-50, 40), (50,50,50), -1)
|
125 |
-
cv2.rectangle(overlay, (w-150, 20),
|
126 |
-
(w-150 + int(100*confidence), 40),
|
127 |
-
(0,255,0), -1)
|
128 |
-
cv2.putText(overlay, f"{confidence*100:.0f}%", (w-140, 35),
|
129 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 1)
|
130 |
-
|
131 |
-
return cv2.addWeighted(overlay, 0.3, img, 0.7, 0)
|
132 |
-
|
133 |
-
def analyze_chart(self, image_path: str) -> Tuple[str, str]:
|
134 |
-
"""Complete analysis pipeline"""
|
135 |
try:
|
136 |
-
# Validate image first
|
137 |
-
if not os.path.exists(image_path):
|
138 |
-
raise ValueError("Image file not found")
|
139 |
-
|
140 |
-
if os.path.getsize(image_path) > 5*1024*1024: # 5MB limit
|
141 |
-
raise ValueError("Image size exceeds 5MB limit")
|
142 |
-
|
143 |
-
# Image processing
|
144 |
base64_image = self.encode_image(image_path)
|
145 |
-
image_url = f"data:image/jpeg;base64,{base64_image}"
|
146 |
|
147 |
-
# AI Analysis
|
148 |
response = openai.ChatCompletion.create(
|
149 |
model=ANALYSIS_MODEL,
|
150 |
messages=[
|
151 |
{
|
152 |
"role": "system",
|
153 |
-
"content":
|
154 |
-
1. Identify exact numerical price levels (e.g., $32,500.75)
|
155 |
-
2. Detect chart timeframe from axis/price action
|
156 |
-
3. List all technical patterns with confidence
|
157 |
-
4. Analyze volume and momentum indicators
|
158 |
-
5. Provide specific trade entry/exit levels"""
|
159 |
},
|
160 |
{
|
161 |
"role": "user",
|
162 |
"content": [
|
163 |
-
{"type": "text", "text": "Perform
|
164 |
{
|
165 |
"type": "image_url",
|
166 |
-
"image_url": {"url":
|
167 |
}
|
168 |
]
|
169 |
}
|
@@ -171,65 +64,19 @@ class ChartAnalyzer:
|
|
171 |
max_tokens=MAX_TOKENS
|
172 |
)
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
analysis['raw_text'] = raw_text
|
177 |
-
|
178 |
-
# Image annotation
|
179 |
-
img = cv2.imread(image_path)
|
180 |
-
if img is not None:
|
181 |
-
img = cv2.resize(img, (1024, 512))
|
182 |
-
annotated_img = self.generate_annotations(img, analysis)
|
183 |
-
output_path = f"analyzed_{datetime.now().strftime('%Y%m%d%H%M%S')}.png"
|
184 |
-
cv2.imwrite(output_path, annotated_img)
|
185 |
-
else:
|
186 |
-
output_path = None
|
187 |
-
|
188 |
-
# Safe formatting
|
189 |
-
current_price_str = (
|
190 |
-
f"{analysis['current_price']:.2f}"
|
191 |
-
if analysis['current_price'] is not None
|
192 |
-
else "N/A"
|
193 |
-
)
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
or "None"
|
198 |
-
)
|
199 |
-
|
200 |
-
resistance_levels = (
|
201 |
-
', '.join(map(lambda x: f"{x:.2f}", analysis['resistance_levels']))
|
202 |
-
or "None"
|
203 |
-
)
|
204 |
-
|
205 |
-
formatted_output = f"""
|
206 |
-
## 📊 Comprehensive Analysis
|
207 |
-
**Current Price:** ${current_price_str}
|
208 |
-
**Timeframe:** {analysis['timeframe'] or 'Auto-detected'}
|
209 |
-
|
210 |
-
### 🔑 Key Levels
|
211 |
-
- Support: {support_levels}
|
212 |
-
- Resistance: {resistance_levels}
|
213 |
-
|
214 |
-
### 🌀 Detected Patterns
|
215 |
-
{', '.join(analysis['patterns']).title() or 'No clear patterns detected'}
|
216 |
-
|
217 |
-
### 📝 Detailed Analysis
|
218 |
-
{raw_text}
|
219 |
-
"""
|
220 |
-
|
221 |
-
return formatted_output, output_path
|
222 |
-
|
223 |
-
except openai.error.InvalidRequestError as e:
|
224 |
-
return f"API Error: {str(e)}", None
|
225 |
except Exception as e:
|
226 |
-
return f"Analysis Error: {str(e)}"
|
227 |
|
228 |
# Gradio Interface
|
229 |
analyzer = ChartAnalyzer()
|
230 |
|
231 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="
|
232 |
-
gr.Markdown("#
|
233 |
|
234 |
with gr.Row():
|
235 |
with gr.Column(scale=1):
|
@@ -237,24 +84,20 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald")) as demo:
|
|
237 |
type="filepath",
|
238 |
label="Upload Chart (PNG/JPG)",
|
239 |
sources=["upload"],
|
240 |
-
height=
|
241 |
)
|
242 |
-
analyze_btn = gr.Button("
|
243 |
|
244 |
with gr.Column(scale=2):
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
chart_output = gr.Image(
|
250 |
-
label="Pattern Recognition",
|
251 |
-
interactive=False
|
252 |
-
)
|
253 |
|
254 |
analyze_btn.click(
|
255 |
fn=analyzer.analyze_chart,
|
256 |
inputs=chart_input,
|
257 |
-
outputs=
|
258 |
)
|
259 |
|
260 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import openai
|
3 |
import os
|
|
|
|
|
4 |
import base64
|
5 |
+
from typing import Tuple
|
|
|
|
|
6 |
|
7 |
# OpenAI API Configuration
|
8 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
9 |
ANALYSIS_MODEL = "gpt-4o"
|
10 |
MAX_TOKENS = 4096
|
11 |
|
12 |
+
# System Prompt Configuration
|
13 |
+
SYSTEM_PROMPT = """Professional Crypto Technical Analyst:
|
14 |
+
1. Identify all technical patterns in the chart
|
15 |
+
2. Determine key support/resistance levels
|
16 |
+
3. Analyze volume and momentum indicators
|
17 |
+
4. Calculate risk/reward ratios
|
18 |
+
5. Provide clear trading recommendations
|
19 |
+
6. Include specific price targets
|
20 |
+
7. Assess market sentiment
|
21 |
+
8. Evaluate trend strength
|
22 |
+
9. Identify potential breakout/breakdown levels
|
23 |
+
10. Provide time-based projections"""
|
24 |
+
|
25 |
class ChartAnalyzer:
|
26 |
def __init__(self):
|
27 |
+
self.last_analysis = ""
|
28 |
|
29 |
def encode_image(self, image_path: str) -> str:
|
30 |
"""Encode image to base64 with validation"""
|
|
|
32 |
raise FileNotFoundError("File not found")
|
33 |
if not image_path.lower().endswith(('.png', '.jpg', '.jpeg')):
|
34 |
raise ValueError("Unsupported file format")
|
35 |
+
if os.path.getsize(image_path) > 5 * 1024 * 1024:
|
36 |
+
raise ValueError("Maximum file size is 5MB")
|
37 |
|
38 |
with open(image_path, "rb") as image_file:
|
39 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
40 |
|
41 |
+
def analyze_chart(self, image_path: str) -> str:
|
42 |
+
"""Core analysis function"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
base64_image = self.encode_image(image_path)
|
|
|
45 |
|
|
|
46 |
response = openai.ChatCompletion.create(
|
47 |
model=ANALYSIS_MODEL,
|
48 |
messages=[
|
49 |
{
|
50 |
"role": "system",
|
51 |
+
"content": SYSTEM_PROMPT
|
|
|
|
|
|
|
|
|
|
|
52 |
},
|
53 |
{
|
54 |
"role": "user",
|
55 |
"content": [
|
56 |
+
{"type": "text", "text": "Perform detailed technical analysis of this chart:"},
|
57 |
{
|
58 |
"type": "image_url",
|
59 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}
|
60 |
}
|
61 |
]
|
62 |
}
|
|
|
64 |
max_tokens=MAX_TOKENS
|
65 |
)
|
66 |
|
67 |
+
self.last_analysis = response.choices[0].message.content
|
68 |
+
return self.last_analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
except openai.error.APIError as e:
|
71 |
+
return f"OpenAI API Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
+
return f"Analysis Error: {str(e)}"
|
74 |
|
75 |
# Gradio Interface
|
76 |
analyzer = ChartAnalyzer()
|
77 |
|
78 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
79 |
+
gr.Markdown("# 🚀 Advanced Crypto Analysis System")
|
80 |
|
81 |
with gr.Row():
|
82 |
with gr.Column(scale=1):
|
|
|
84 |
type="filepath",
|
85 |
label="Upload Chart (PNG/JPG)",
|
86 |
sources=["upload"],
|
87 |
+
height=200
|
88 |
)
|
89 |
+
analyze_btn = gr.Button("Start Analysis", variant="primary")
|
90 |
|
91 |
with gr.Column(scale=2):
|
92 |
+
analysis_output = gr.Markdown(
|
93 |
+
label="Professional Analysis Report",
|
94 |
+
elem_classes=["analysis-box"]
|
95 |
+
)
|
|
|
|
|
|
|
|
|
96 |
|
97 |
analyze_btn.click(
|
98 |
fn=analyzer.analyze_chart,
|
99 |
inputs=chart_input,
|
100 |
+
outputs=analysis_output
|
101 |
)
|
102 |
|
103 |
if __name__ == "__main__":
|