Spaces:
Runtime error
Runtime error
Commit
·
9bb0768
1
Parent(s):
61a05a4
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
from transformers.file_utils import cached_path, hf_bucket_url
|
5 |
+
import os
|
6 |
+
from transformers import Wav2Vec2ProcessorWithLM, AutoModelForCTC
|
7 |
+
from datasets import load_dataset
|
8 |
+
import torch
|
9 |
+
import kenlm
|
10 |
+
import torchaudio
|
11 |
+
|
12 |
+
cache_dir = './cache/'
|
13 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained("ahmedJaafari/Annarabic3.2", cache_dir=cache_dir, use_auth_token=st.secrets["AnnarabicToken"])
|
14 |
+
model = AutoModelForCTC.from_pretrained("ahmedJaafari/Annarabic3.2", cache_dir=cache_dir, use_auth_token=st.secrets["AnnarabicToken"])
|
15 |
+
|
16 |
+
# define function to read in sound file
|
17 |
+
def speech_file_to_array_fn(path, max_seconds=10):
|
18 |
+
batch = {"file": path}
|
19 |
+
speech_array, sampling_rate = torchaudio.load(batch["file"])
|
20 |
+
if sampling_rate != 16000:
|
21 |
+
transform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
|
22 |
+
new_freq=16000)
|
23 |
+
speech_array = transform(speech_array)
|
24 |
+
speech_array = speech_array[0]
|
25 |
+
if max_seconds > 0:
|
26 |
+
speech_array = speech_array[:max_seconds*16000]
|
27 |
+
batch["speech"] = speech_array.numpy()
|
28 |
+
batch["sampling_rate"] = 16000
|
29 |
+
return batch
|
30 |
+
|
31 |
+
# tokenize
|
32 |
+
def inference(audio):
|
33 |
+
# read in sound file
|
34 |
+
# load dummy dataset and read soundfiles
|
35 |
+
ds = speech_file_to_array_fn(audio.name)
|
36 |
+
# infer model
|
37 |
+
input_values = processor(
|
38 |
+
ds["speech"],
|
39 |
+
sampling_rate=ds["sampling_rate"],
|
40 |
+
return_tensors="pt"
|
41 |
+
).input_values
|
42 |
+
# decode ctc output
|
43 |
+
with torch.no_grad():
|
44 |
+
logits = model(input_values).logits
|
45 |
+
|
46 |
+
#pred_ids = torch.argmax(logits, dim=-1)
|
47 |
+
h = logits.numpy()[0,:,:]
|
48 |
+
v = np.pad(h, [0, 2], mode='constant')
|
49 |
+
|
50 |
+
output = processor.decode(v).text
|
51 |
+
|
52 |
+
return output[:-4]
|
53 |
+
|
54 |
+
inputs = gr.inputs.Audio(label="Input Audio", type="file")
|
55 |
+
outputs = gr.outputs.Textbox(label="Output Text")
|
56 |
+
title = "Annarabic Speech Recognition System"
|
57 |
+
description = "Gradio demo for Annarabic ASR. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below."
|
58 |
+
examples=[['Aya.mp3'], ['Loubna.mp3']]
|
59 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description, examples=examples).launch()
|