Annarabic / app.py
ahmedJaafari's picture
Update app.py
f3c4afb
raw
history blame
2.55 kB
import gradio as gr
from transformers.file_utils import cached_path, hf_bucket_url
import os
from transformers import Wav2Vec2Processor, AutoModelForCTC
from datasets import load_dataset
import torch
import kenlm
import torchaudio
cache_dir = './cache/'
processor = Wav2Vec2ProcessorWithLM.from_pretrained("ahmedJaafari/Annarabic3.2", cache_dir=cache_dir, use_auth_token="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")
processor2 = Wav2Vec2Processor.from_pretrained("ahmedJaafari/Annarabic3.2", cache_dir=cache_dir, use_auth_token="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")
model = AutoModelForCTC.from_pretrained("ahmedJaafari/Annarabic3.2", cache_dir=cache_dir, use_auth_token="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")
# define function to read in sound file
def speech_file_to_array_fn(path, max_seconds=10):
batch = {"file": path}
speech_array, sampling_rate = torchaudio.load(batch["file"])
if sampling_rate != 16000:
transform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
new_freq=16000)
speech_array = transform(speech_array)
speech_array = speech_array[0]
if max_seconds > 0:
speech_array = speech_array[:max_seconds*16000]
batch["speech"] = speech_array.numpy()
batch["sampling_rate"] = 16000
return batch
# tokenize
def inference(audio):
# read in sound file
# load dummy dataset and read soundfiles
ds = speech_file_to_array_fn(audio.name)
# infer model
input_values = processor(
ds["speech"],
sampling_rate=ds["sampling_rate"],
return_tensors="pt"
).input_values
# decode ctc output
with torch.no_grad():
logits = model(input_values).logits
#pred_ids = torch.argmax(logits, dim=-1)
h = logits.numpy()[0,:,:]
v = np.pad(h, [0, 2], mode='constant')
output = processor.decode(v).text
return output[:-4]
inputs = gr.inputs.Audio(label="Input Audio", type="file")
outputs = gr.outputs.Textbox(label="Output Text")
title = "Annarabic Speech Recognition System"
description = "Gradio demo for Annarabic ASR. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below. Currently supports .wav 16_000hz files"
article = "<a href='https://huggingface.co/ahmedJaafari' target='_blank'>Pretrained model</a></p>"
#examples=[['t1_0001-00010.wav'], ['t1_utt000000042.wav'], ['t2_0000006682.wav']]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch()