Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
import requests | |
from PIL import Image | |
import torch, os, re | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png') | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1229.png', 'chart_example_2.png') | |
model_name = "ahmed-masry/unichart-base-960" | |
model = VisionEncoderDecoderModel.from_pretrained(model_name, use_auth_token=os.environ['temp_access_token']) | |
processor = DonutProcessor.from_pretrained(model_name, use_auth_token=os.environ['temp_access_token']) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def predict(image, input_prompt): | |
input_prompt += " <s_answer>" | |
decoder_input_ids = processor.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=4, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=2).strip() | |
return sequence | |
image = gr.inputs.Image(type="pil", label="Chart Image") | |
input_prompt = gr.inputs.Textbox(label="Input Prompt") | |
model_output = gr.outputs.Textbox(label="Model Output") | |
examples = [["chart_example_1.png", "<summarize_chart>"], | |
["chart_example_2.png", "<extract_data_table>"]] | |
title = "Interactive Gradio Demo for UniChart-base-960 model" | |
interface = gr.Interface(fn=predict, | |
inputs=[image, input_prompt], | |
outputs=model_output, | |
examples=examples, | |
title=title, | |
theme='gradio/soft', | |
enable_queue=True) | |
interface.launch() |