ahmed-7124 commited on
Commit
d6d9787
·
verified ·
1 Parent(s): a378efa

Create app

Browse files
Files changed (1) hide show
  1. app +183 -0
app ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ from transformers import TextIteratorStreamer
5
+ from accelerate import init_empty_weights, load_checkpoint_and_dispatch
6
+ from threading import Thread
7
+ from langchain_community.vectorstores.faiss import FAISS
8
+ from langchain_huggingface import HuggingFaceEmbeddings
9
+ from huggingface_hub import snapshot_download
10
+
11
+ # Set an environment variable
12
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
13
+
14
+ MODEL_NAME_OR_PATH = 'StevenChen16/llama3-8b-Lawyer'
15
+
16
+ DESCRIPTION = '''
17
+ <div style="display: flex; align-items: center; justify-content: center; text-align: center;">
18
+ <a href="https://wealthwizards.org/" target="_blank">
19
+ <img src="./images/logo.png" alt="Wealth Wizards Logo" style="width: 60px; height: auto; margin-right: 10px;">
20
+ </a>
21
+ <div style="display: inline-block; text-align: left;">
22
+ <h1 style="font-size: 36px; margin: 0;">AI Lawyer</h1>
23
+ <a href="https://wealthwizards.org/" target="_blank" style="text-decoration: none; color: inherit;">
24
+ <p style="font-size: 16px; margin: 0;">wealth wizards</p>
25
+ </a>
26
+ </div>
27
+ </div>
28
+ '''
29
+
30
+ LICENSE = """
31
+ <p/>
32
+ ---
33
+ Built with model "StevenChen16/Llama3-8B-Lawyer", based on "meta-llama/Meta-Llama-3-8B"
34
+ """
35
+
36
+ PLACEHOLDER = """
37
+ <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
38
+ <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">AI Lawyer</h1>
39
+ <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything about US and Canada law...</p>
40
+ </div>
41
+ """
42
+
43
+ css = """
44
+ h1 {
45
+ text-align: center;
46
+ display: block;
47
+ }
48
+ #duplicate-button {
49
+ margin: auto;
50
+ color: white;
51
+ background: #1565c0;
52
+ border-radius: 100vh;
53
+ }
54
+ """
55
+
56
+ # Load the tokenizer
57
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH)
58
+
59
+ # Load the model with disk offloading
60
+ print("Loading the model with disk offloading...")
61
+ model = AutoModelForCausalLM.from_pretrained(
62
+ MODEL_NAME_OR_PATH,
63
+ trust_remote_code=True,
64
+ low_cpu_mem_usage=True # Optimize memory usage during loading
65
+ )
66
+
67
+ # Specify an offload folder and map the model to disk and available GPUs
68
+ device_map = infer_auto_device_map(model, max_memory={"cpu": "50GB", "cuda:0": "16GB"})
69
+ dispatch_model(
70
+ model,
71
+ device_map=device_map,
72
+ offload_folder="./offload" # Folder for offloaded weights
73
+ )
74
+
75
+ terminators = [
76
+ tokenizer.eos_token_id,
77
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
78
+ ]
79
+
80
+ # Embedding model and FAISS vector store
81
+ def create_embedding_model(model_name):
82
+ return HuggingFaceEmbeddings(
83
+ model_name=model_name,
84
+ model_kwargs={'trust_remote_code': True}
85
+ )
86
+
87
+ embedding_model = create_embedding_model('intfloat/multilingual-e5-large-instruct')
88
+
89
+ try:
90
+ print("Downloading vector store from HuggingFace Hub...")
91
+ repo_path = snapshot_download(
92
+ repo_id="StevenChen16/laws.faiss",
93
+ repo_type="model"
94
+ )
95
+ print("Loading vector store...")
96
+ vector_store = FAISS.load_local(
97
+ folder_path=repo_path,
98
+ embeddings=embedding_model,
99
+ allow_dangerous_deserialization=True
100
+ )
101
+ print("Vector store loaded successfully")
102
+ except Exception as e:
103
+ raise RuntimeError(f"Failed to load vector store from HuggingFace Hub: {str(e)}")
104
+
105
+ background_prompt = '''
106
+ As an AI legal assistant, you are a highly trained expert in U.S. and Canadian law. Your purpose is to provide accurate, comprehensive, and professional legal information...
107
+ [Shortened for brevity]
108
+ '''
109
+
110
+ def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
111
+ """
112
+ Query similar documents from vector store.
113
+ """
114
+ retriever = vector_store.as_retriever(
115
+ search_type="similarity_score_threshold",
116
+ search_kwargs={"score_threshold": relevance_threshold, "k": k}
117
+ )
118
+ similar_docs = retriever.invoke(query)
119
+ context = [doc.page_content for doc in similar_docs]
120
+ return " ".join(context) if context else ""
121
+
122
+ def chat_llama3_8b(message: str, history: list, temperature=0.6, max_new_tokens=4096) -> str:
123
+ """
124
+ Generate a streaming response using the LLaMA model.
125
+ """
126
+ citation = query_vector_store(vector_store, message, k=4, relevance_threshold=0.7)
127
+
128
+ conversation = []
129
+ for user, assistant in history:
130
+ conversation.extend([
131
+ {"role": "user", "content": str(user)},
132
+ {"role": "assistant", "content": str(assistant)}
133
+ ])
134
+
135
+ final_message = f"{background_prompt}\n{message}" if not citation else f"{background_prompt}\nBased on these references:\n{citation}\nPlease answer: {message}"
136
+ conversation.append({"role": "user", "content": final_message})
137
+
138
+ input_ids = tokenizer.apply_chat_template(
139
+ conversation,
140
+ return_tensors="pt"
141
+ ).to(model.device)
142
+
143
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
144
+
145
+ generation_config = {
146
+ "input_ids": input_ids,
147
+ "streamer": streamer,
148
+ "max_new_tokens": max_new_tokens,
149
+ "do_sample": temperature > 0,
150
+ "temperature": temperature,
151
+ "eos_token_id": terminators
152
+ }
153
+
154
+ thread = Thread(target=model.generate, kwargs=generation_config)
155
+ thread.start()
156
+
157
+ accumulated_text = []
158
+ for text_chunk in streamer:
159
+ accumulated_text.append(text_chunk)
160
+ yield "".join(accumulated_text)
161
+
162
+ # Gradio interface
163
+ chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
164
+
165
+ with gr.Blocks(fill_height=True, css=css) as demo:
166
+ gr.Markdown(DESCRIPTION)
167
+ gr.ChatInterface(
168
+ fn=chat_llama3_8b,
169
+ chatbot=chatbot,
170
+ fill_height=True,
171
+ examples=[
172
+ ['What are the key differences between a sole proprietorship and a partnership?'],
173
+ ['What legal steps should I take if I want to start a business in the US?'],
174
+ ['Can you explain the concept of "duty of care" in negligence law?'],
175
+ ['What are the legal requirements for obtaining a patent in Canada?'],
176
+ ['How can I protect my intellectual property when sharing my idea with potential investors?']
177
+ ],
178
+ cache_examples=False,
179
+ )
180
+ gr.Markdown(LICENSE)
181
+
182
+ if __name__ == "__main__":
183
+ demo.launch()