File size: 2,525 Bytes
aa47277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import pandas as pd
import streamlit as st
from transformers import pipeline
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, balanced_accuracy_score

# Charger le modèle pré-entraîné
classifier_model = "morit/french_xlm_xnli"
classifier = pipeline("zero-shot-classification", model=classifier_model)

# Charger les données depuis le fichier CSV
df = pd.read_csv("Comments.csv")

# Récupérer les commentaires en liste
comments = df["Comment"].tolist()

# Afficher l'entête
st.header("Analyse de Texte")

# Créer une selectbox pour choisir un commentaire
selected_comment = st.selectbox("Veuillez sélectionner un commentaire", comments)

# Afficher le commentaire sélectionné dans l'input text
text = st.text_input('Entrer le texte à analyser', value=selected_comment)

# Labels candidats pour la classification
candidate_labels = ["commentaire positif", "commentaire négatif"]

# Modèle de phrase pour la formation de l'hypothèse
hypothesis_template = "Cet exemple est un {}."

# Exécuter la classification seulement si du texte est entré
if text and candidate_labels:
    result = classifier(text, candidate_labels, hypothesis_template=hypothesis_template)
    st.info(f"Résultat: {result['labels'][0]} avec une confiance de {result['scores'][0]*100:.2f}%")
else:
    st.write("Veuillez entrer du texte pour l'analyse.")

# Calculer les métriques de performance (vous devez ajuster ces lignes selon votre tâche)
if text and candidate_labels:
    inputs = df["Comment"].tolist()
    true_labels = df["Label"].tolist()
    predictions = classifier(inputs, candidate_labels, hypothesis_template=hypothesis_template)
    predicted_labels = [result['labels'][0] for result in predictions]
    
    accuracy = accuracy_score(true_labels, predicted_labels)
    precision = precision_score(true_labels, predicted_labels, average='binary')  # Si votre tâche est binaire
    recall = recall_score(true_labels, predicted_labels, average='binary')  # Si votre tâche est binaire
    f1 = f1_score(true_labels, predicted_labels, average='binary')  # Si votre tâche est binaire
    balanced_accuracy = balanced_accuracy_score(true_labels, predicted_labels)

    # Afficher les métriques sous forme de tableau
    st.header("Métriques de Performance")
    metrics_df = pd.DataFrame({
        "Métrique": ["Accuracy", "Precision", "Recall", "F1-score", "Balanced Accuracy"],
        "Valeur": [accuracy, precision, recall, f1, balanced_accuracy]
    })
    st.table(metrics_df)