ahmad-fakhar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,154 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
|
|
4 |
|
5 |
-
#
|
6 |
-
st.
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"])
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import time
|
3 |
+
from transformers import pipeline
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import tempfile
|
8 |
import os
|
9 |
+
import soundfile as sf
|
10 |
|
11 |
+
# Set page config
|
12 |
+
st.set_page_config(page_title="π΅ Music Genre Classifier", layout="wide")
|
13 |
|
14 |
+
# Custom CSS for UI
|
15 |
+
st.markdown("""
|
16 |
+
<style>
|
17 |
+
.main-title {
|
18 |
+
font-size: 3rem;
|
19 |
+
color: #1DB954;
|
20 |
+
text-align: center;
|
21 |
+
padding: 2rem 0;
|
22 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
|
23 |
+
}
|
24 |
+
.sub-title {
|
25 |
+
font-size: 1.5rem;
|
26 |
+
color: #191414;
|
27 |
+
text-align: center;
|
28 |
+
margin-bottom: 2rem;
|
29 |
+
}
|
30 |
+
.stAudio {
|
31 |
+
margin: 2rem auto;
|
32 |
+
display: block;
|
33 |
+
}
|
34 |
+
.genre-result {
|
35 |
+
font-size: 2rem;
|
36 |
+
font-weight: bold;
|
37 |
+
text-align: center;
|
38 |
+
color: #1DB954;
|
39 |
+
margin: 1rem 0;
|
40 |
+
}
|
41 |
+
.prediction-time {
|
42 |
+
font-size: 1.2rem;
|
43 |
+
color: #191414;
|
44 |
+
text-align: center;
|
45 |
+
}
|
46 |
+
</style>
|
47 |
+
""", unsafe_allow_html=True)
|
48 |
|
49 |
+
@st.cache_resource
|
50 |
+
def load_model():
|
51 |
+
return pipeline("audio-classification", model="juangtzi/wav2vec2-base-finetuned-gtzan")
|
52 |
|
53 |
+
pipe = load_model()
|
|
|
54 |
|
55 |
+
def convert_to_wav(audio_file):
|
56 |
+
"""Converts uploaded audio file to WAV format."""
|
57 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav:
|
58 |
+
# Use soundfile to load and save the audio file as WAV
|
59 |
+
audio_data, samplerate = sf.read(audio_file)
|
60 |
+
sf.write(tmp_wav.name, audio_data, samplerate)
|
61 |
+
return tmp_wav.name
|
62 |
+
|
63 |
+
def classify_audio(audio_file):
|
64 |
+
"""Classifies the audio file using the loaded model."""
|
65 |
+
start_time = time.time()
|
66 |
+
|
67 |
+
# Convert to WAV format before passing to the model
|
68 |
+
wav_file = convert_to_wav(audio_file)
|
69 |
|
70 |
+
try:
|
71 |
+
# Use the wav file with the model
|
72 |
+
preds = pipe(wav_file)
|
73 |
+
outputs = {p["label"]: p["score"] for p in preds}
|
74 |
+
end_time = time.time()
|
75 |
+
prediction_time = end_time - start_time
|
76 |
+
return outputs, prediction_time
|
77 |
+
finally:
|
78 |
+
os.unlink(wav_file) # Remove the temp file
|
79 |
+
|
80 |
+
# Page title and subtitle
|
81 |
+
st.markdown("<h1 class='main-title'>π΅ Music Genre Classifier</h1>", unsafe_allow_html=True)
|
82 |
+
st.markdown("<p class='sub-title'>Upload a music file and let AI detect its genre!</p>", unsafe_allow_html=True)
|
83 |
+
|
84 |
+
# Sidebar with model and dataset information
|
85 |
+
st.sidebar.title("About")
|
86 |
+
st.sidebar.info("""
|
87 |
+
This app uses a fine-tuned wav2vec2-base model to classify music genres.
|
88 |
+
Model: juangtzi/wav2vec2-base-finetuned-gtzan
|
89 |
+
Dataset: GTZAN
|
90 |
+
""")
|
91 |
+
|
92 |
+
# Upload file section
|
93 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"])
|
94 |
+
|
95 |
+
if uploaded_file is not None:
|
96 |
+
# Display the uploaded audio file
|
97 |
+
st.audio(uploaded_file)
|
98 |
|
99 |
+
# Classify the uploaded audio
|
100 |
+
if st.button("Classify Genre"):
|
101 |
+
with st.spinner("Analyzing the music... π§"):
|
102 |
+
try:
|
103 |
+
results, pred_time = classify_audio(uploaded_file)
|
104 |
+
|
105 |
+
# Get the top predicted genre
|
106 |
+
top_genre = max(results, key=results.get)
|
107 |
+
|
108 |
+
# Display the top predicted genre
|
109 |
+
st.markdown(f"<h2 class='genre-result'>Detected Genre: {top_genre.capitalize()}</h2>", unsafe_allow_html=True)
|
110 |
+
st.markdown(f"<p class='prediction-time'>Prediction Time: {pred_time:.2f} seconds</p>", unsafe_allow_html=True)
|
111 |
+
|
112 |
+
# Plot the genre probabilities as a bar chart
|
113 |
+
fig = go.Figure(data=[go.Bar(
|
114 |
+
x=list(results.keys()),
|
115 |
+
y=list(results.values()),
|
116 |
+
marker_color='#1DB954'
|
117 |
+
)])
|
118 |
+
fig.update_layout(
|
119 |
+
title="Genre Probabilities",
|
120 |
+
xaxis_title="Genre",
|
121 |
+
yaxis_title="Probability",
|
122 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
123 |
+
plot_bgcolor='rgba(0,0,0,0)'
|
124 |
+
)
|
125 |
+
st.plotly_chart(fig, use_container_width=True)
|
126 |
+
|
127 |
+
# # Load the audio for displaying waveform
|
128 |
+
# y, sr = librosa.load(uploaded_file, sr=None)
|
129 |
+
|
130 |
+
# # Plot the audio waveform
|
131 |
+
# st.subheader("Audio Waveform")
|
132 |
+
# fig_waveform = go.Figure(data=[go.Scatter(y=y, mode='lines', line=dict(color='#1DB954'))])
|
133 |
+
# fig_waveform.update_layout(
|
134 |
+
# title="Audio Waveform",
|
135 |
+
# xaxis_title="Time",
|
136 |
+
# yaxis_title="Amplitude",
|
137 |
+
# paper_bgcolor='rgba(0,0,0,0)',
|
138 |
+
# plot_bgcolor='rgba(0,0,0,0)'
|
139 |
+
# )
|
140 |
+
# st.plotly_chart(fig_waveform, use_container_width=True)
|
141 |
+
|
142 |
+
# π Show balloons after successfully displaying the results
|
143 |
+
st.balloons()
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
st.error(f"An error occurred while processing the audio: {str(e)}")
|
147 |
+
st.info("Please try uploading the file again or use a different audio file.")
|
148 |
|
149 |
+
# Footer
|
150 |
+
st.markdown("""
|
151 |
+
<div style='text-align: center; margin-top: 2rem;'>
|
152 |
+
<p>Created with β€οΈ by AI. Powered by Streamlit and Hugging Face Transformers.</p>
|
153 |
+
</div>
|
154 |
+
""", unsafe_allow_html=True)
|