Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Fine-tuning the library models for named entity recognition on CoNLL-2003. """ | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from importlib import import_module | |
from typing import Dict, List, Optional, Tuple | |
import numpy as np | |
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score | |
from torch import nn | |
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModelForTokenClassification, | |
AutoTokenizer, | |
DataCollatorWithPadding, | |
EvalPrediction, | |
HfArgumentParser, | |
Trainer, | |
TrainingArguments, | |
set_seed, | |
) | |
from transformers.trainer_utils import is_main_process | |
logger = logging.getLogger(__name__) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
task_type: Optional[str] = field( | |
default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) | |
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, | |
# or just modify its tokenizer_config.json. | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
data_dir: str = field( | |
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} | |
) | |
labels: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, | |
) | |
max_seq_length: int = field( | |
default=128, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" | |
" --overwrite_output_dir to overcome." | |
) | |
module = import_module("tasks") | |
try: | |
token_classification_task_clazz = getattr(module, model_args.task_type) | |
token_classification_task: TokenClassificationTask = token_classification_task_clazz() | |
except AttributeError: | |
raise ValueError( | |
f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " | |
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
training_args.local_rank, | |
training_args.device, | |
training_args.n_gpu, | |
bool(training_args.local_rank != -1), | |
training_args.fp16, | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(training_args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
logger.info("Training/evaluation parameters %s", training_args) | |
# Set seed | |
set_seed(training_args.seed) | |
# Prepare CONLL-2003 task | |
labels = token_classification_task.get_labels(data_args.labels) | |
label_map: Dict[int, str] = dict(enumerate(labels)) | |
num_labels = len(labels) | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
num_labels=num_labels, | |
id2label=label_map, | |
label2id={label: i for i, label in enumerate(labels)}, | |
cache_dir=model_args.cache_dir, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast, | |
) | |
model = AutoModelForTokenClassification.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
) | |
# Get datasets | |
train_dataset = ( | |
TokenClassificationDataset( | |
token_classification_task=token_classification_task, | |
data_dir=data_args.data_dir, | |
tokenizer=tokenizer, | |
labels=labels, | |
model_type=config.model_type, | |
max_seq_length=data_args.max_seq_length, | |
overwrite_cache=data_args.overwrite_cache, | |
mode=Split.train, | |
) | |
if training_args.do_train | |
else None | |
) | |
eval_dataset = ( | |
TokenClassificationDataset( | |
token_classification_task=token_classification_task, | |
data_dir=data_args.data_dir, | |
tokenizer=tokenizer, | |
labels=labels, | |
model_type=config.model_type, | |
max_seq_length=data_args.max_seq_length, | |
overwrite_cache=data_args.overwrite_cache, | |
mode=Split.dev, | |
) | |
if training_args.do_eval | |
else None | |
) | |
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: | |
preds = np.argmax(predictions, axis=2) | |
batch_size, seq_len = preds.shape | |
out_label_list = [[] for _ in range(batch_size)] | |
preds_list = [[] for _ in range(batch_size)] | |
for i in range(batch_size): | |
for j in range(seq_len): | |
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: | |
out_label_list[i].append(label_map[label_ids[i][j]]) | |
preds_list[i].append(label_map[preds[i][j]]) | |
return preds_list, out_label_list | |
def compute_metrics(p: EvalPrediction) -> Dict: | |
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) | |
return { | |
"accuracy_score": accuracy_score(out_label_list, preds_list), | |
"precision": precision_score(out_label_list, preds_list), | |
"recall": recall_score(out_label_list, preds_list), | |
"f1": f1_score(out_label_list, preds_list), | |
} | |
# Data collator | |
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
compute_metrics=compute_metrics, | |
data_collator=data_collator, | |
) | |
# Training | |
if training_args.do_train: | |
trainer.train( | |
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None | |
) | |
trainer.save_model() | |
# For convenience, we also re-save the tokenizer to the same directory, | |
# so that you can share your model easily on huggingface.co/models =) | |
if trainer.is_world_process_zero(): | |
tokenizer.save_pretrained(training_args.output_dir) | |
# Evaluation | |
results = {} | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
result = trainer.evaluate() | |
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") | |
if trainer.is_world_process_zero(): | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results *****") | |
for key, value in result.items(): | |
logger.info(" %s = %s", key, value) | |
writer.write("%s = %s\n" % (key, value)) | |
results.update(result) | |
# Predict | |
if training_args.do_predict: | |
test_dataset = TokenClassificationDataset( | |
token_classification_task=token_classification_task, | |
data_dir=data_args.data_dir, | |
tokenizer=tokenizer, | |
labels=labels, | |
model_type=config.model_type, | |
max_seq_length=data_args.max_seq_length, | |
overwrite_cache=data_args.overwrite_cache, | |
mode=Split.test, | |
) | |
predictions, label_ids, metrics = trainer.predict(test_dataset) | |
preds_list, _ = align_predictions(predictions, label_ids) | |
output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") | |
if trainer.is_world_process_zero(): | |
with open(output_test_results_file, "w") as writer: | |
for key, value in metrics.items(): | |
logger.info(" %s = %s", key, value) | |
writer.write("%s = %s\n" % (key, value)) | |
# Save predictions | |
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") | |
if trainer.is_world_process_zero(): | |
with open(output_test_predictions_file, "w") as writer: | |
with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: | |
token_classification_task.write_predictions_to_file(writer, f, preds_list) | |
return results | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |