Spaces:
Paused
Paused
#!/usr/bin/env python | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import datetime | |
import json | |
import time | |
import warnings | |
from logging import getLogger | |
from pathlib import Path | |
from typing import Dict, List | |
import torch | |
from tqdm import tqdm | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params | |
logger = getLogger(__name__) | |
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
def generate_summaries_or_translations( | |
examples: List[str], | |
out_file: str, | |
model_name: str, | |
batch_size: int = 8, | |
device: str = DEFAULT_DEVICE, | |
fp16=False, | |
task="summarization", | |
prefix=None, | |
**generate_kwargs, | |
) -> Dict: | |
"""Save model.generate results to <out_file>, and return how long it took.""" | |
fout = Path(out_file).open("w", encoding="utf-8") | |
model_name = str(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) | |
if fp16: | |
model = model.half() | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type. | |
start_time = time.time() | |
# update config with task specific params | |
use_task_specific_params(model, task) | |
if prefix is None: | |
prefix = prefix or getattr(model.config, "prefix", "") or "" | |
for examples_chunk in tqdm(list(chunks(examples, batch_size))): | |
examples_chunk = [prefix + text for text in examples_chunk] | |
batch = tokenizer(examples_chunk, return_tensors="pt", truncation=True, padding="longest").to(device) | |
summaries = model.generate( | |
input_ids=batch.input_ids, | |
attention_mask=batch.attention_mask, | |
**generate_kwargs, | |
) | |
dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
for hypothesis in dec: | |
fout.write(hypothesis + "\n") | |
fout.flush() | |
fout.close() | |
runtime = int(time.time() - start_time) # seconds | |
n_obs = len(examples) | |
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4)} | |
def datetime_now(): | |
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
def run_generate(verbose=True): | |
""" | |
Takes input text, generates output, and then using reference calculates the BLEU scores. | |
The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed. | |
Args: | |
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout | |
Returns: | |
a tuple: ``(scores, params}`` | |
- ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}`` | |
- ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}`` | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") | |
parser.add_argument("input_path", type=str, help="like cnn_dm/test.source") | |
parser.add_argument("save_path", type=str, help="where to save summaries") | |
parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test.target") | |
parser.add_argument("--score_path", type=str, required=False, default="metrics.json", help="where to save metrics") | |
parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.") | |
parser.add_argument( | |
"--prefix", type=str, required=False, default=None, help="will be added to the begininng of src examples" | |
) | |
parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics") | |
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") | |
parser.add_argument( | |
"--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all." | |
) | |
parser.add_argument("--fp16", action="store_true") | |
parser.add_argument("--dump-args", action="store_true", help="print the custom hparams with the results") | |
parser.add_argument( | |
"--info", | |
nargs="?", | |
type=str, | |
const=datetime_now(), | |
help=( | |
"use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." | |
" lang=en-ru. If no value is passed, the current datetime string will be used." | |
), | |
) | |
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate | |
args, rest = parser.parse_known_args() | |
parsed_args = parse_numeric_n_bool_cl_kwargs(rest) | |
if parsed_args and verbose: | |
print(f"parsed the following generate kwargs: {parsed_args}") | |
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()] | |
if args.n_obs > 0: | |
examples = examples[: args.n_obs] | |
Path(args.save_path).parent.mkdir(exist_ok=True) | |
if args.reference_path is None and Path(args.score_path).exists(): | |
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c.") | |
if args.device == "cpu" and args.fp16: | |
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' | |
raise ValueError("Can't mix --fp16 and --device cpu") | |
runtime_metrics = generate_summaries_or_translations( | |
examples, | |
args.save_path, | |
args.model_name, | |
batch_size=args.bs, | |
device=args.device, | |
fp16=args.fp16, | |
task=args.task, | |
prefix=args.prefix, | |
**parsed_args, | |
) | |
if args.reference_path is None: | |
return {} | |
# Compute scores | |
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge | |
output_lns = [x.rstrip() for x in open(args.save_path).readlines()] | |
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)] | |
scores: dict = score_fn(output_lns, reference_lns) | |
scores.update(runtime_metrics) | |
if args.dump_args: | |
scores.update(parsed_args) | |
if args.info: | |
scores["info"] = args.info | |
if verbose: | |
print(scores) | |
if args.score_path is not None: | |
json.dump(scores, open(args.score_path, "w")) | |
return scores | |
if __name__ == "__main__": | |
# Usage for MT: | |
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ | |
run_generate(verbose=True) | |