Spaces:
Paused
Paused
File size: 11,282 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
## Token classification
Based on the scripts [`run_ner.py`](https://github.com/huggingface/transformers/blob/main/examples/legacy/token-classification/run_ner.py).
The following examples are covered in this section:
* NER on the GermEval 2014 (German NER) dataset
* Emerging and Rare Entities task: WNUT’17 (English NER) dataset
Details and results for the fine-tuning provided by @stefan-it.
### GermEval 2014 (German NER) dataset
#### Data (Download and pre-processing steps)
Data can be obtained from the [GermEval 2014](https://sites.google.com/site/germeval2014ner/data) shared task page.
Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted:
```bash
curl -L 'https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp
curl -L 'https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
```
The GermEval 2014 dataset contains some strange "control character" tokens like `'\x96', '\u200e', '\x95', '\xad' or '\x80'`.
One problem with these tokens is, that `BertTokenizer` returns an empty token for them, resulting in misaligned `InputExample`s.
The `preprocess.py` script located in the `scripts` folder a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached).
Let's define some variables that we need for further pre-processing steps and training the model:
```bash
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
```
Run the pre-processing script on training, dev and test datasets:
```bash
python3 scripts/preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
python3 scripts/preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt
python3 scripts/preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt
```
The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used:
```bash
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
```
#### Prepare the run
Additional environment variables must be set:
```bash
export OUTPUT_DIR=germeval-model
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
```
#### Run the Pytorch version
To start training, just run:
```bash
python3 run_ner.py --data_dir ./ \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_device_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
```
If your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
#### JSON-based configuration file
Instead of passing all parameters via commandline arguments, the `run_ner.py` script also supports reading parameters from a json-based configuration file:
```json
{
"data_dir": ".",
"labels": "./labels.txt",
"model_name_or_path": "bert-base-multilingual-cased",
"output_dir": "germeval-model",
"max_seq_length": 128,
"num_train_epochs": 3,
"per_device_train_batch_size": 32,
"save_steps": 750,
"seed": 1,
"do_train": true,
"do_eval": true,
"do_predict": true
}
```
It must be saved with a `.json` extension and can be used by running `python3 run_ner.py config.json`.
#### Evaluation
Evaluation on development dataset outputs the following for our example:
```bash
10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146
10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543
10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111
10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806
```
On the test dataset the following results could be achieved:
```bash
10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803
10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782
10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
```
#### Run the Tensorflow 2 version
To start training, just run:
```bash
python3 run_tf_ner.py --data_dir ./ \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_device_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
```
Such as the Pytorch version, if your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
#### Evaluation
Evaluation on development dataset outputs the following for our example:
```bash
precision recall f1-score support
LOCderiv 0.7619 0.6154 0.6809 52
PERpart 0.8724 0.8997 0.8858 4057
OTHpart 0.9360 0.9466 0.9413 711
ORGpart 0.7015 0.6989 0.7002 269
LOCpart 0.7668 0.8488 0.8057 496
LOC 0.8745 0.9191 0.8963 235
ORGderiv 0.7723 0.8571 0.8125 91
OTHderiv 0.4800 0.6667 0.5581 18
OTH 0.5789 0.6875 0.6286 16
PERderiv 0.5385 0.3889 0.4516 18
PER 0.5000 0.5000 0.5000 2
ORG 0.0000 0.0000 0.0000 3
micro avg 0.8574 0.8862 0.8715 5968
macro avg 0.8575 0.8862 0.8713 5968
```
On the test dataset the following results could be achieved:
```bash
precision recall f1-score support
PERpart 0.8847 0.8944 0.8896 9397
OTHpart 0.9376 0.9353 0.9365 1639
ORGpart 0.7307 0.7044 0.7173 697
LOC 0.9133 0.9394 0.9262 561
LOCpart 0.8058 0.8157 0.8107 1150
ORG 0.0000 0.0000 0.0000 8
OTHderiv 0.5882 0.4762 0.5263 42
PERderiv 0.6571 0.5227 0.5823 44
OTH 0.4906 0.6667 0.5652 39
ORGderiv 0.7016 0.7791 0.7383 172
LOCderiv 0.8256 0.6514 0.7282 109
PER 0.0000 0.0000 0.0000 11
micro avg 0.8722 0.8774 0.8748 13869
macro avg 0.8712 0.8774 0.8740 13869
```
### Emerging and Rare Entities task: WNUT’17 (English NER) dataset
Description of the WNUT’17 task from the [shared task website](http://noisy-text.github.io/2017/index.html):
> The WNUT’17 shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions.
> Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on
> them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms.
Six labels are available in the dataset. An overview can be found on this [page](http://noisy-text.github.io/2017/files/).
#### Data (Download and pre-processing steps)
The dataset can be downloaded from the [official GitHub](https://github.com/leondz/emerging_entities_17) repository.
The following commands show how to prepare the dataset for fine-tuning:
```bash
mkdir -p data_wnut_17
curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/wnut17train.conll' | tr '\t' ' ' > data_wnut_17/train.txt.tmp
curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/emerging.dev.conll' | tr '\t' ' ' > data_wnut_17/dev.txt.tmp
curl -L 'https://raw.githubusercontent.com/leondz/emerging_entities_17/master/emerging.test.annotated' | tr '\t' ' ' > data_wnut_17/test.txt.tmp
```
Let's define some variables that we need for further pre-processing steps:
```bash
export MAX_LENGTH=128
export BERT_MODEL=bert-large-cased
```
Here we use the English BERT large model for fine-tuning.
The `preprocess.py` scripts splits longer sentences into smaller ones (once the max. subtoken length is reached):
```bash
python3 scripts/preprocess.py data_wnut_17/train.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/train.txt
python3 scripts/preprocess.py data_wnut_17/dev.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/dev.txt
python3 scripts/preprocess.py data_wnut_17/test.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/test.txt
```
In the last pre-processing step, the `labels.txt` file needs to be generated. This file contains all available labels:
```bash
cat data_wnut_17/train.txt data_wnut_17/dev.txt data_wnut_17/test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > data_wnut_17/labels.txt
```
#### Run the Pytorch version
Fine-tuning with the PyTorch version can be started using the `run_ner.py` script. In this example we use a JSON-based configuration file.
This configuration file looks like:
```json
{
"data_dir": "./data_wnut_17",
"labels": "./data_wnut_17/labels.txt",
"model_name_or_path": "bert-large-cased",
"output_dir": "wnut-17-model-1",
"max_seq_length": 128,
"num_train_epochs": 3,
"per_device_train_batch_size": 32,
"save_steps": 425,
"seed": 1,
"do_train": true,
"do_eval": true,
"do_predict": true,
"fp16": false
}
```
If your GPU supports half-precision training, please set `fp16` to `true`.
Save this JSON-based configuration under `wnut_17.json`. The fine-tuning can be started with `python3 run_ner_old.py wnut_17.json`.
#### Evaluation
Evaluation on development dataset outputs the following:
```bash
05/29/2020 23:33:44 - INFO - __main__ - ***** Eval results *****
05/29/2020 23:33:44 - INFO - __main__ - eval_loss = 0.26505235286212275
05/29/2020 23:33:44 - INFO - __main__ - eval_precision = 0.7008264462809918
05/29/2020 23:33:44 - INFO - __main__ - eval_recall = 0.507177033492823
05/29/2020 23:33:44 - INFO - __main__ - eval_f1 = 0.5884802220680084
05/29/2020 23:33:44 - INFO - __main__ - epoch = 3.0
```
On the test dataset the following results could be achieved:
```bash
05/29/2020 23:33:44 - INFO - transformers.trainer - ***** Running Prediction *****
05/29/2020 23:34:02 - INFO - __main__ - eval_loss = 0.30948806500973547
05/29/2020 23:34:02 - INFO - __main__ - eval_precision = 0.5840108401084011
05/29/2020 23:34:02 - INFO - __main__ - eval_recall = 0.3994439295644115
05/29/2020 23:34:02 - INFO - __main__ - eval_f1 = 0.47440836543753434
```
WNUT’17 is a very difficult task. Current state-of-the-art results on this dataset can be found [here](https://nlpprogress.com/english/named_entity_recognition.html).
|