Spaces:
Paused
Paused
File size: 13,961 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seq2seq_trainer import Seq2SeqTrainer
from seq2seq_training_args import Seq2SeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
Seq2SeqDataCollator,
Seq2SeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."})
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
)
task: Optional[str] = field(
default="summarization",
metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=142,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
test_max_target_length: Optional[int] = field(
default=142,
metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
)
def handle_metrics(split, metrics, output_dir):
"""
Log and save metrics
Args:
- split: one of train, val, test
- metrics: metrics dict
- output_dir: where to save the metrics
"""
logger.info(f"***** {split} metrics *****")
for key in sorted(metrics.keys()):
logger.info(f" {key} = {metrics[key]}")
save_json(metrics, os.path.join(output_dir, f"{split}_results.json"))
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
check_output_dir(training_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED),
training_args.fp16,
)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(training_args, p, None):
assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
setattr(config, p, getattr(training_args, p))
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=".ckpt" in model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
)
# use task specific params
use_task_specific_params(model, data_args.task)
# set num_beams for evaluation
if data_args.eval_beams is None:
data_args.eval_beams = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang)
if model_args.freeze_embeds:
freeze_embeds(model)
if model_args.freeze_encoder:
freeze_params(model.get_encoder())
assert_all_frozen(model.get_encoder())
dataset_class = Seq2SeqDataset
# Get datasets
train_dataset = (
dataset_class(
tokenizer,
type_path="train",
data_dir=data_args.data_dir,
n_obs=data_args.n_train,
max_target_length=data_args.max_target_length,
max_source_length=data_args.max_source_length,
prefix=model.config.prefix or "",
)
if training_args.do_train
else None
)
eval_dataset = (
dataset_class(
tokenizer,
type_path="val",
data_dir=data_args.data_dir,
n_obs=data_args.n_val,
max_target_length=data_args.val_max_target_length,
max_source_length=data_args.max_source_length,
prefix=model.config.prefix or "",
)
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
test_dataset = (
dataset_class(
tokenizer,
type_path="test",
data_dir=data_args.data_dir,
n_obs=data_args.n_test,
max_target_length=data_args.test_max_target_length,
max_source_length=data_args.max_source_length,
prefix=model.config.prefix or "",
)
if training_args.do_predict
else None
)
# Initialize our Trainer
compute_metrics_fn = (
build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
data_args=data_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=Seq2SeqDataCollator(
tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores
),
compute_metrics=compute_metrics_fn,
tokenizer=tokenizer,
)
all_metrics = {}
# Training
if training_args.do_train:
logger.info("*** Train ***")
train_result = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
metrics = train_result.metrics
metrics["train_n_objs"] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("train", metrics, training_args.output_dir)
all_metrics.update(metrics)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(metric_key_prefix="val")
metrics["val_n_objs"] = data_args.n_val
metrics["val_loss"] = round(metrics["val_loss"], 4)
if trainer.is_world_process_zero():
handle_metrics("val", metrics, training_args.output_dir)
all_metrics.update(metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test")
metrics = test_output.metrics
metrics["test_n_objs"] = data_args.n_test
if trainer.is_world_process_zero():
metrics["test_loss"] = round(metrics["test_loss"], 4)
handle_metrics("test", metrics, training_args.output_dir)
all_metrics.update(metrics)
if training_args.predict_with_generate:
test_preds = tokenizer.batch_decode(
test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
test_preds = lmap(str.strip, test_preds)
write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
if trainer.is_world_process_zero():
save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json"))
return all_metrics
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
|