File size: 8,428 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import json
import logging
import os
import sys
from unittest.mock import patch

from transformers.testing_utils import TestCasePlus, get_gpu_count, slow


SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
    for dirname in [
        "text-classification",
        "language-modeling",
        "summarization",
        "token-classification",
        "question-answering",
    ]
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
    import run_clm_flax
    import run_flax_glue
    import run_flax_ner
    import run_mlm_flax
    import run_qa
    import run_summarization_flax
    import run_t5_mlm_flax


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()


def get_setup_file():
    parser = argparse.ArgumentParser()
    parser.add_argument("-f")
    args = parser.parse_args()
    return args.f


def get_results(output_dir, split="eval"):
    path = os.path.join(output_dir, f"{split}_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            return json.load(f)
    raise ValueError(f"can't find {path}")


stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class ExamplesTests(TestCasePlus):
    def test_run_glue(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_glue.py
            --model_name_or_path distilbert-base-uncased
            --output_dir {tmp_dir}
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --learning_rate=1e-4
            --eval_steps=2
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
            """.split()

        with patch.object(sys, "argv", testargs):
            run_flax_glue.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)

    @slow
    def test_run_clm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm_flax.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --num_train_epochs 2
            --logging_steps 2 --eval_steps 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        with patch.object(sys, "argv", testargs):
            run_clm_flax.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_perplexity"], 100)

    @slow
    def test_run_summarization(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_summarization.py
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --test_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --num_train_epochs=3
            --warmup_steps=8
            --do_train
            --do_eval
            --do_predict
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_summarization_flax.main()
            result = get_results(tmp_dir, split="test")
            self.assertGreaterEqual(result["test_rouge1"], 10)
            self.assertGreaterEqual(result["test_rouge2"], 2)
            self.assertGreaterEqual(result["test_rougeL"], 7)
            self.assertGreaterEqual(result["test_rougeLsum"], 7)

    @slow
    def test_run_mlm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mlm.py
            --model_name_or_path distilroberta-base
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_seq_length 128
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --logging_steps 2 --eval_steps 2
            --do_train
            --do_eval
            --num_train_epochs=1
        """.split()

        with patch.object(sys, "argv", testargs):
            run_mlm_flax.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_perplexity"], 42)

    @slow
    def test_run_t5_mlm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_t5_mlm_flax.py
            --model_name_or_path t5-small
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --max_seq_length 128
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --num_train_epochs 2
            --logging_steps 2 --eval_steps 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        with patch.object(sys, "argv", testargs):
            run_t5_mlm_flax.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.42)

    @slow
    def test_run_ner(self):
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_flax_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
            --logging_steps 2 --eval_steps 2
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
            --num_train_epochs={epochs}
            --seed 7
        """.split()

        with patch.object(sys, "argv", testargs):
            run_flax_ner.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
            self.assertGreaterEqual(result["eval_f1"], 0.3)

    @slow
    def test_run_qa(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_qa.py
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --num_train_epochs=3
            --warmup_steps=2
            --do_train
            --do_eval
            --logging_steps 2 --eval_steps 2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
            run_qa.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)