Spaces:
Running
Running
File size: 17,361 Bytes
078e8d3 0846e85 078e8d3 0846e85 078e8d3 ad928cc 078e8d3 0846e85 078e8d3 0846e85 bf07f51 0846e85 bf07f51 71e1889 19fabdc 71e1889 078e8d3 6a96152 078e8d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
import cv2
import gradio as gr
import numpy as np
from ultralytics import YOLO
import easyocr
import pytesseract
import keras_ocr
import pandas as pd
from PIL import Image
import io
import re
from typing import List, Tuple, Union
from datetime import datetime
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import torch
from datetime import datetime
import time
from paddleocr import PaddleOCR
# Initialisation of models
def load_models():
global model_vehicle, model_plate, reader_easyocr, pipeline_kerasocr, processor_trocr, model_trocr, ocr_paddle
model_vehicle = YOLO('models/yolov8n.pt')
model_plate = YOLO('models/best.pt')
reader_easyocr = easyocr.Reader(['en'], gpu=False)
pipeline_kerasocr = keras_ocr.pipeline.Pipeline()
processor_trocr = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
model_trocr = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
ocr_paddle = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False)
load_models()
# patterns plate layouts europe
EUROPEAN_PATTERNS = {
'FR': r'^(?:[A-Z]{2}-\d{3}-[A-Z]{2}|\d{2,4}\s?[A-Z]{2,3}\s?\d{2,4})$', # France
'DE': r'^[A-Z]{1,3}-[A-Z]{1,2}\s?\d{1,4}[EH]?$', # Germany
'ES': r'^(\d{4}[A-Z]{3}|[A-Z]{1,2}\d{4}[A-Z]{2,3})$', # Spain
'IT': r'^[A-Z]{2}\s?\d{3}\s?[A-Z]{2}$', # Italy
'GB': r'^[A-Z]{2}\d{2}\s?[A-Z]{3}$', # Great-Britain
'NL': r'^[A-Z]{2}-\d{3}-[A-Z]$', # Netherlands
'BE': r'^(1-[A-Z]{3}-\d{3}|\d-[A-Z]{3}-\d{3})$', # Belgium
'PL': r'^[A-Z]{2,3}\s?\d{4,5}$', # Poland
'SE': r'^[A-Z]{3}\s?\d{3}$', # Sweden
'NO': r'^[A-Z]{2}\s?\d{5}$', # Norway
'FI': r'^[A-Z]{3}-\d{3}$', # Finland
'DK': r'^[A-Z]{2}\s?\d{2}\s?\d{3}$', # Denmark
'CH': r'^[A-Z]{2}\s?\d{1,6}$', # Switzerland
'AT': r'^[A-Z]{1,2}\s?\d{1,5}[A-Z]$', # Austria
'PT': r'^[A-Z]{2}-\d{2}-[A-Z]{2}$', # Portugal
'EU': r'^[A-Z0-9]{2,4}[-\s]?[A-Z0-9]{1,4}[-\s]?[A-Z0-9]{1,4}$' # Generic European plate
}
def preprocess_image(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
return cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)
@torch.no_grad()
def trocr_ocr(image):
pixel_values = processor_trocr(image, return_tensors="pt").pixel_values
generated_ids = model_trocr.generate(pixel_values)
return processor_trocr.batch_decode(generated_ids, skip_special_tokens=True)[0]
def read_license_plate(license_plate_crop, ocr_engine='easyocr'):
if ocr_engine == 'easyocr':
detections_raw = reader_easyocr.readtext(license_plate_crop)
detections_preprocessed = reader_easyocr.readtext(preprocess_image(license_plate_crop))
elif ocr_engine == 'pytesseract':
text_raw = pytesseract.image_to_string(license_plate_crop, config='--psm 8')
text_preprocessed = pytesseract.image_to_string(preprocess_image(license_plate_crop), config='--psm 8')
detections_raw = [(None, text_raw.strip(), None)]
detections_preprocessed = [(None, text_preprocessed.strip(), None)]
elif ocr_engine == 'kerasocr':
if len(license_plate_crop.shape) == 2 or license_plate_crop.shape[2] == 1:
license_plate_crop = cv2.cvtColor(license_plate_crop, cv2.COLOR_GRAY2RGB)
detection_results_raw = pipeline_kerasocr.recognize([license_plate_crop])[0]
detection_results_preprocessed = pipeline_kerasocr.recognize([preprocess_image(license_plate_crop)])[0]
detections_raw = [(None, ''.join([text for text, box in detection_results_raw]), None)]
detections_preprocessed = [(None, ''.join([text for text, box in detection_results_preprocessed]), None)]
elif ocr_engine == 'trocr':
text_raw = trocr_ocr(license_plate_crop)
text_preprocessed = trocr_ocr(preprocess_image(license_plate_crop))
detections_raw = [(None, text_raw.strip(), None)]
detections_preprocessed = [(None, text_preprocessed.strip(), None)]
elif ocr_engine == 'paddleocr':
preprocessed_image = preprocess_image(license_plate_crop) # Assurez-vous que cette ligne est incluse
result_raw = ocr_paddle.ocr(license_plate_crop)
result_preprocessed = ocr_paddle.ocr(preprocessed_image)
# Vérifiez si les résultats ne sont pas vides avant de les utiliser
if result_raw and result_raw[0]:
detections_raw = [(None, result_raw[0][0][1][0], result_raw[0][0][1][1])]
else:
detections_raw = [(None, '', 0.0)]
if result_preprocessed and result_preprocessed[0]:
detections_preprocessed = [(None, result_preprocessed[0][0][1][0], result_preprocessed[0][0][1][1])]
else:
detections_preprocessed = [(None, '', 0.0)]
else:
raise ValueError(f"OCR engine '{ocr_engine}' not supported.")
def extract_text(detections):
plate = []
for detection in detections:
_, text, _ = detection
text = text.upper().replace(' ', '')
plate.append(text)
return " ".join(plate) if plate else None
return extract_text(detections_raw), extract_text(detections_preprocessed)
def clean_plate_text(text):
if text is None:
return ''
cleaned = re.sub(r'[^A-Z0-9\-\s]', '', text.upper())
cleaned = re.sub(r'\s+', '', cleaned).strip()
return cleaned
def validate_european_plate(text):
for country, pattern in EUROPEAN_PATTERNS.items():
if re.match(pattern, text):
return text, country
return None, None
def post_process_ocr(raw_text, preprocessed_text):
cleaned_raw = clean_plate_text(raw_text)
validated_raw, country_raw = validate_european_plate(cleaned_raw)
cleaned_preprocessed = clean_plate_text(preprocessed_text)
validated_preprocessed, country_preprocessed = validate_european_plate(cleaned_preprocessed)
if validated_raw:
return validated_raw, country_raw, True
elif validated_preprocessed:
return validated_preprocessed, country_preprocessed, True
return cleaned_raw, 'Unknown', False
def detect_and_recognize_plates(image, ocr_engine='easyocr', confidence_threshold=0.5):
results_vehicle = model_vehicle(image)
plates_detected = []
cropped_plates = []
vehicles_found = False
for result in results_vehicle:
for bbox in result.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = bbox
if score < confidence_threshold:
continue # Skip detections below the confidence threshold
if int(class_id) == 2: # Class ID 2 represents cars in COCO dataset
vehicles_found = True
vehicle = image[int(y1):int(y2), int(x1):int(x2)]
results_plate = model_plate(vehicle)
for result_plate in results_plate:
for bbox_plate in result_plate.boxes.data.tolist():
px1, py1, px2, py2, pscore, pclass_id = bbox_plate
if pscore < confidence_threshold:
continue # Skip detections below the confidence threshold
plate = vehicle[int(py1):int(py2), int(px1):int(px2)]
cropped_plates.append(plate) # Save the cropped plate
raw_result, preprocessed_result = read_license_plate(plate, ocr_engine=ocr_engine)
if raw_result or preprocessed_result:
validated_text, country, is_valid = post_process_ocr(raw_result, preprocessed_result)
plates_detected.append({
'raw_text': raw_result,
'preprocessed_text': preprocessed_result,
'validated_text': validated_text,
'country': country,
'is_valid': is_valid,
'bbox': [int(x1+px1), int(y1+py1), int(x1+px2), int(y1+py2)]
})
# Annotate the image
cv2.rectangle(image, (int(x1+px1), int(y1+py1)), (int(x1+px2), int(y1+py2)), (0, 255, 0), 2)
if validated_text:
cv2.putText(image, f"{validated_text} ({country})", (int(x1+px1), int(y1+py1)-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
if not vehicles_found:
results_plate = model_plate(image)
for result_plate in results_plate:
for bbox_plate in result_plate.boxes.data.tolist():
px1, py1, px2, py2, pscore, pclass_id = bbox_plate
if pscore < confidence_threshold:
continue # Skip detections below the confidence threshold
plate = image[int(py1):int(py2), int(px1):int(px2)]
cropped_plates.append(plate) # Save the cropped plate
raw_result, preprocessed_result = read_license_plate(plate, ocr_engine=ocr_engine)
if raw_result or preprocessed_result:
validated_text, country, is_valid = post_process_ocr(raw_result, preprocessed_result)
plates_detected.append({
'raw_text': raw_result,
'preprocessed_text': preprocessed_result,
'validated_text': validated_text,
'country': country,
'is_valid': is_valid,
'bbox': [int(px1), int(py1), int(px2), int(py2)]
})
# Annotate the image
cv2.rectangle(image, (int(px1), int(py1)), (int(px2), int(py2)), (0, 255, 0), 2)
if validated_text:
cv2.putText(image, f"{validated_text} ({country})", (int(px1), int(py1)-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return image, plates_detected, cropped_plates
def process_image(input_image, ocr_engine='easyocr', confidence_threshold=0.5) -> Tuple[Union[np.ndarray, None], pd.DataFrame, List[np.ndarray]]:
try:
# Convert Gradio image to numpy array
if isinstance(input_image, np.ndarray):
image_np = input_image
elif isinstance(input_image, Image.Image):
image_np = np.array(input_image)
else:
raise ValueError("Unsupported image type")
# Detect and recognize plates
annotated_image, plates, cropped_plates = detect_and_recognize_plates(image_np, ocr_engine=ocr_engine, confidence_threshold=confidence_threshold)
# Prepare the result as a pandas DataFrame
results = []
for i, plate in enumerate(plates):
results.append({
"Plate Number": i + 1,
"Validated Text": plate['validated_text'],
"Country": plate['country'],
"Valid": "Yes" if plate['is_valid'] else "No",
"Raw OCR": plate['raw_text'],
"Preprocessed OCR": plate['preprocessed_text'],
})
df = pd.DataFrame(results) if results else pd.DataFrame({"Message": ["No license plates detected"]})
return annotated_image, df, cropped_plates
except Exception as e:
print(f"An error occurred: {str(e)}")
return None, pd.DataFrame({"Error": [str(e)]}), []
def compare_ocr_engines(image):
ocr_engines = ['easyocr', 'pytesseract', 'kerasocr', 'trocr']
results = {}
for engine in ocr_engines:
start_time = time.time()
_, df, _ = process_image(image, ocr_engine=engine)
end_time = time.time()
results[engine] = {
'processing_time': end_time - start_time,
'plates_detected': len(df) if 'Plate Number' in df.columns else 0,
'texts': df['Validated Text'].tolist() if 'Validated Text' in df.columns else []
}
comparison_df = pd.DataFrame({
'OCR Engine': ocr_engines,
'Processing Time (s)': [results[engine]['processing_time'] for engine in ocr_engines],
'Plates Detected': [results[engine]['plates_detected'] for engine in ocr_engines],
'Detected Texts': [', '.join(results[engine]['texts']) for engine in ocr_engines]
})
return comparison_df
# gradio app
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🚗 ALPR YOLOv8 and Multi-OCR 🚗
Test this ALPR solution using YOLOv8 and various OCR engines!
> Better results with high quality images, plate aligned horizontally, clearly visible.
"""
)
with gr.Tabs():
with gr.TabItem("Single Image Processing"):
with gr.Accordion("How It Works", open=False):
gr.Markdown(
"""
This ALPR (Automatic License Plate Recognition) system works in several steps:
1. Vehicle Detection: Uses YOLOv8 to detect vehicles in the image with pretrained model on MS-COCO dataset.
2. License Plate Detection: Applies a custom YOLOv8 model to locate license plates region within detected vehicles to crop it.
3. Add preprocessing on the cropped plate that can help to give better results in some situation.
4. OCR: Employs various OCR engines to read the text on the cropped license plates.
5. Post-processing: Cleans and validates the detected text against known license plate patterns.
"""
)
with gr.Accordion("OCR Engines", open=False):
gr.Markdown(
"""
The system supports multiple OCR engines:
- [EasyOCR](https://github.com/JaidedAI/EasyOCR): General-purpose OCR library with good accuracy.
- [Pytesseract](https://github.com/madmaze/pytesseract): Open-source OCR engine based on Tesseract.
- [Keras-OCR](https://github.com/faustomorales/keras-ocr): Deep learning-based OCR solution.
- [TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr): Transformer-based OCR model for handwritten and printed text.
Each engine has its strengths and may perform differently depending on the image quality and license plate style.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="numpy", label="Input image")
ocr_selector = gr.Radio(choices=['easyocr', 'paddleocr', 'pytesseract', 'kerasocr', 'trocr'], value='easyocr', label="Select OCR Engine")
confidence_slider = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.01, label="Detection Confidence Threshold")
submit_btn = gr.Button("Detect License Plates", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(type="numpy", label="Annotated image")
cropped_plate_gallery = gr.Gallery(label="Cropped plates")
output_table = gr.Dataframe(label="Detection results")
with gr.Accordion("Understanding the Results", open=False):
gr.Markdown(
"""
The results table provides the following information:
- Plate Number: Sequential number assigned to each detected plate.
- Validated Text: The final, cleaned, and validated license plate text.
- Country: Estimated country of origin based on the plate format.
- Valid: Indicates whether the plate matches a known format.
- Raw OCR: The initial text detected by the OCR engine.
- Preprocessed OCR: Text detected after image preprocessing.
The confidence threshold determines the minimum confidence score for a detection to be considered valid.
"""
)
with gr.TabItem("OCR Engine Comparison"):
with gr.Row():
comparison_input = gr.Image(type="numpy", label="Input Image for Comparison")
compare_btn = gr.Button("Compare OCR Engines")
comparison_output = gr.Dataframe(label="OCR Engine Comparison Results")
# Event handlers
submit_btn.click(
fn=process_image,
inputs=[input_image, ocr_selector, confidence_slider],
outputs=[output_image, output_table, cropped_plate_gallery]
)
compare_btn.click(
fn=compare_ocr_engines,
inputs=[comparison_input],
outputs=[comparison_output]
)
if __name__ == "__main__":
demo.launch() |