File size: 17,361 Bytes
078e8d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0846e85
078e8d3
 
 
0846e85
078e8d3
 
ad928cc
078e8d3
 
 
0846e85
078e8d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0846e85
bf07f51
0846e85
 
bf07f51
 
 
 
 
 
 
 
 
 
 
 
71e1889
 
19fabdc
71e1889
078e8d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a96152
078e8d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import cv2
import gradio as gr
import numpy as np
from ultralytics import YOLO
import easyocr
import pytesseract
import keras_ocr
import pandas as pd
from PIL import Image
import io 
import re
from typing import List, Tuple, Union
from datetime import datetime
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import torch
from datetime import datetime
import time
from paddleocr import PaddleOCR

# Initialisation of models
def load_models():
    global model_vehicle, model_plate, reader_easyocr, pipeline_kerasocr, processor_trocr, model_trocr, ocr_paddle
    model_vehicle = YOLO('models/yolov8n.pt')
    model_plate = YOLO('models/best.pt')
    reader_easyocr = easyocr.Reader(['en'], gpu=False)
    pipeline_kerasocr = keras_ocr.pipeline.Pipeline()
    processor_trocr = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
    model_trocr = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
    ocr_paddle = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False)
load_models()

# patterns plate layouts europe
EUROPEAN_PATTERNS = {
    'FR': r'^(?:[A-Z]{2}-\d{3}-[A-Z]{2}|\d{2,4}\s?[A-Z]{2,3}\s?\d{2,4})$',  # France
    'DE': r'^[A-Z]{1,3}-[A-Z]{1,2}\s?\d{1,4}[EH]?$',  # Germany
    'ES': r'^(\d{4}[A-Z]{3}|[A-Z]{1,2}\d{4}[A-Z]{2,3})$',  # Spain
    'IT': r'^[A-Z]{2}\s?\d{3}\s?[A-Z]{2}$',  # Italy
    'GB': r'^[A-Z]{2}\d{2}\s?[A-Z]{3}$',  # Great-Britain
    'NL': r'^[A-Z]{2}-\d{3}-[A-Z]$',  # Netherlands
    'BE': r'^(1-[A-Z]{3}-\d{3}|\d-[A-Z]{3}-\d{3})$',  # Belgium
    'PL': r'^[A-Z]{2,3}\s?\d{4,5}$',  # Poland
    'SE': r'^[A-Z]{3}\s?\d{3}$',  # Sweden
    'NO': r'^[A-Z]{2}\s?\d{5}$',  # Norway
    'FI': r'^[A-Z]{3}-\d{3}$',  # Finland
    'DK': r'^[A-Z]{2}\s?\d{2}\s?\d{3}$',  # Denmark
    'CH': r'^[A-Z]{2}\s?\d{1,6}$',  # Switzerland
    'AT': r'^[A-Z]{1,2}\s?\d{1,5}[A-Z]$',  # Austria
    'PT': r'^[A-Z]{2}-\d{2}-[A-Z]{2}$',  # Portugal
    'EU': r'^[A-Z0-9]{2,4}[-\s]?[A-Z0-9]{1,4}[-\s]?[A-Z0-9]{1,4}$'  # Generic European plate
}

def preprocess_image(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
    return cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)

@torch.no_grad()
def trocr_ocr(image):
    pixel_values = processor_trocr(image, return_tensors="pt").pixel_values
    generated_ids = model_trocr.generate(pixel_values)
    return processor_trocr.batch_decode(generated_ids, skip_special_tokens=True)[0]

def read_license_plate(license_plate_crop, ocr_engine='easyocr'):
    if ocr_engine == 'easyocr':
        detections_raw = reader_easyocr.readtext(license_plate_crop)
        detections_preprocessed = reader_easyocr.readtext(preprocess_image(license_plate_crop))
    elif ocr_engine == 'pytesseract':
        text_raw = pytesseract.image_to_string(license_plate_crop, config='--psm 8')
        text_preprocessed = pytesseract.image_to_string(preprocess_image(license_plate_crop), config='--psm 8')
        detections_raw = [(None, text_raw.strip(), None)]
        detections_preprocessed = [(None, text_preprocessed.strip(), None)]
    elif ocr_engine == 'kerasocr':
        if len(license_plate_crop.shape) == 2 or license_plate_crop.shape[2] == 1:
            license_plate_crop = cv2.cvtColor(license_plate_crop, cv2.COLOR_GRAY2RGB)
        detection_results_raw = pipeline_kerasocr.recognize([license_plate_crop])[0]
        detection_results_preprocessed = pipeline_kerasocr.recognize([preprocess_image(license_plate_crop)])[0]
        detections_raw = [(None, ''.join([text for text, box in detection_results_raw]), None)]
        detections_preprocessed = [(None, ''.join([text for text, box in detection_results_preprocessed]), None)]
    elif ocr_engine == 'trocr':
        text_raw = trocr_ocr(license_plate_crop)
        text_preprocessed = trocr_ocr(preprocess_image(license_plate_crop))
        detections_raw = [(None, text_raw.strip(), None)]
        detections_preprocessed = [(None, text_preprocessed.strip(), None)]
    elif ocr_engine == 'paddleocr':
        preprocessed_image = preprocess_image(license_plate_crop)  # Assurez-vous que cette ligne est incluse
        result_raw = ocr_paddle.ocr(license_plate_crop)
        result_preprocessed = ocr_paddle.ocr(preprocessed_image)
        
        # Vérifiez si les résultats ne sont pas vides avant de les utiliser
        if result_raw and result_raw[0]:
            detections_raw = [(None, result_raw[0][0][1][0], result_raw[0][0][1][1])]
        else:
            detections_raw = [(None, '', 0.0)]
        
        if result_preprocessed and result_preprocessed[0]:
            detections_preprocessed = [(None, result_preprocessed[0][0][1][0], result_preprocessed[0][0][1][1])]
        else:
            detections_preprocessed = [(None, '', 0.0)]

    else:
        raise ValueError(f"OCR engine '{ocr_engine}' not supported.")

    
    def extract_text(detections):
        plate = []
        for detection in detections:
            _, text, _ = detection
            text = text.upper().replace(' ', '')
            plate.append(text)
        return " ".join(plate) if plate else None

    return extract_text(detections_raw), extract_text(detections_preprocessed)

def clean_plate_text(text):
    if text is None:
        return ''
    cleaned = re.sub(r'[^A-Z0-9\-\s]', '', text.upper())
    cleaned = re.sub(r'\s+', '', cleaned).strip()
    return cleaned

def validate_european_plate(text):
    for country, pattern in EUROPEAN_PATTERNS.items():
        if re.match(pattern, text):
            return text, country
    return None, None

def post_process_ocr(raw_text, preprocessed_text):
    cleaned_raw = clean_plate_text(raw_text)
    validated_raw, country_raw = validate_european_plate(cleaned_raw)
    
    cleaned_preprocessed = clean_plate_text(preprocessed_text)
    validated_preprocessed, country_preprocessed = validate_european_plate(cleaned_preprocessed)
    
    if validated_raw:
        return validated_raw, country_raw, True
    elif validated_preprocessed:
        return validated_preprocessed, country_preprocessed, True
    
    return cleaned_raw, 'Unknown', False

def detect_and_recognize_plates(image, ocr_engine='easyocr', confidence_threshold=0.5):
    results_vehicle = model_vehicle(image)
    
    plates_detected = []
    cropped_plates = []
    vehicles_found = False
    
    for result in results_vehicle:
        for bbox in result.boxes.data.tolist():
            x1, y1, x2, y2, score, class_id = bbox
            if score < confidence_threshold:
                continue  # Skip detections below the confidence threshold
            if int(class_id) == 2:  # Class ID 2 represents cars in COCO dataset
                vehicles_found = True
                vehicle = image[int(y1):int(y2), int(x1):int(x2)]
                
                results_plate = model_plate(vehicle)
                
                for result_plate in results_plate:
                    for bbox_plate in result_plate.boxes.data.tolist():
                        px1, py1, px2, py2, pscore, pclass_id = bbox_plate
                        if pscore < confidence_threshold:
                            continue  # Skip detections below the confidence threshold
                        plate = vehicle[int(py1):int(py2), int(px1):int(px2)]
                        cropped_plates.append(plate)  # Save the cropped plate
                        
                        raw_result, preprocessed_result = read_license_plate(plate, ocr_engine=ocr_engine)
                        
                        if raw_result or preprocessed_result:
                            validated_text, country, is_valid = post_process_ocr(raw_result, preprocessed_result)
                            
                            plates_detected.append({
                                'raw_text': raw_result,
                                'preprocessed_text': preprocessed_result,
                                'validated_text': validated_text,
                                'country': country,
                                'is_valid': is_valid,
                                'bbox': [int(x1+px1), int(y1+py1), int(x1+px2), int(y1+py2)]
                            })
                        
                        # Annotate the image
                        cv2.rectangle(image, (int(x1+px1), int(y1+py1)), (int(x1+px2), int(y1+py2)), (0, 255, 0), 2)
                        if validated_text:
                            cv2.putText(image, f"{validated_text} ({country})", (int(x1+px1), int(y1+py1)-10),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

    if not vehicles_found:
        results_plate = model_plate(image)
        for result_plate in results_plate:
            for bbox_plate in result_plate.boxes.data.tolist():
                px1, py1, px2, py2, pscore, pclass_id = bbox_plate
                if pscore < confidence_threshold:
                    continue  # Skip detections below the confidence threshold
                plate = image[int(py1):int(py2), int(px1):int(px2)]
                cropped_plates.append(plate)  # Save the cropped plate
                
                raw_result, preprocessed_result = read_license_plate(plate, ocr_engine=ocr_engine)
                
                if raw_result or preprocessed_result:
                    validated_text, country, is_valid = post_process_ocr(raw_result, preprocessed_result)
                    
                    plates_detected.append({
                        'raw_text': raw_result,
                        'preprocessed_text': preprocessed_result,
                        'validated_text': validated_text,
                        'country': country,
                        'is_valid': is_valid,
                        'bbox': [int(px1), int(py1), int(px2), int(py2)]
                    })
                
                # Annotate the image
                cv2.rectangle(image, (int(px1), int(py1)), (int(px2), int(py2)), (0, 255, 0), 2)
                if validated_text:
                    cv2.putText(image, f"{validated_text} ({country})", (int(px1), int(py1)-10),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

    return image, plates_detected, cropped_plates

def process_image(input_image, ocr_engine='easyocr', confidence_threshold=0.5) -> Tuple[Union[np.ndarray, None], pd.DataFrame, List[np.ndarray]]:
    try:
        # Convert Gradio image to numpy array
        if isinstance(input_image, np.ndarray):
            image_np = input_image
        elif isinstance(input_image, Image.Image):
            image_np = np.array(input_image)
        else:
            raise ValueError("Unsupported image type")
        
        # Detect and recognize plates
        annotated_image, plates, cropped_plates = detect_and_recognize_plates(image_np, ocr_engine=ocr_engine, confidence_threshold=confidence_threshold)
        
        # Prepare the result as a pandas DataFrame
        results = []
        for i, plate in enumerate(plates):
            results.append({
                "Plate Number": i + 1,
                "Validated Text": plate['validated_text'],
                "Country": plate['country'],
                "Valid": "Yes" if plate['is_valid'] else "No",
                "Raw OCR": plate['raw_text'],
                "Preprocessed OCR": plate['preprocessed_text'],
            })
        
        df = pd.DataFrame(results) if results else pd.DataFrame({"Message": ["No license plates detected"]})
        
        return annotated_image, df, cropped_plates
    except Exception as e:
        print(f"An error occurred: {str(e)}")
        return None, pd.DataFrame({"Error": [str(e)]}), []

def compare_ocr_engines(image):
    ocr_engines = ['easyocr', 'pytesseract', 'kerasocr', 'trocr']
    results = {}
    
    for engine in ocr_engines:
        start_time = time.time()
        _, df, _ = process_image(image, ocr_engine=engine)
        end_time = time.time()
        
        results[engine] = {
            'processing_time': end_time - start_time,
            'plates_detected': len(df) if 'Plate Number' in df.columns else 0,
            'texts': df['Validated Text'].tolist() if 'Validated Text' in df.columns else []
        }
    
    comparison_df = pd.DataFrame({
        'OCR Engine': ocr_engines,
        'Processing Time (s)': [results[engine]['processing_time'] for engine in ocr_engines],
        'Plates Detected': [results[engine]['plates_detected'] for engine in ocr_engines],
        'Detected Texts': [', '.join(results[engine]['texts']) for engine in ocr_engines]
    })
    
    return comparison_df

# gradio app 
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🚗 ALPR YOLOv8 and Multi-OCR 🚗

        Test this ALPR solution using YOLOv8 and various OCR engines! 

        > Better results with high quality images, plate aligned horizontally, clearly visible. 
        """
    )
    
    with gr.Tabs():
        with gr.TabItem("Single Image Processing"):
            with gr.Accordion("How It Works", open=False):
                gr.Markdown(
                    """
                    This ALPR (Automatic License Plate Recognition) system works in several steps:
                    1. Vehicle Detection: Uses YOLOv8 to detect vehicles in the image with pretrained model on MS-COCO dataset.
                    2. License Plate Detection: Applies a custom YOLOv8 model to locate license plates region within detected vehicles to crop it.
                    3. Add preprocessing on the cropped plate that can help to give better results in some situation. 
                    4. OCR: Employs various OCR engines to read the text on the cropped license plates.
                    5. Post-processing: Cleans and validates the detected text against known license plate patterns.
                    """
                )
            
            with gr.Accordion("OCR Engines", open=False):
                gr.Markdown(
                    """
                    The system supports multiple OCR engines:
                    - [EasyOCR](https://github.com/JaidedAI/EasyOCR): General-purpose OCR library with good accuracy.
                    - [Pytesseract](https://github.com/madmaze/pytesseract): Open-source OCR engine based on Tesseract.
                    - [Keras-OCR](https://github.com/faustomorales/keras-ocr): Deep learning-based OCR solution.
                    - [TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr): Transformer-based OCR model for handwritten and printed text. 
                    
                    Each engine has its strengths and may perform differently depending on the image quality and license plate style.
                    """
                )
            
            with gr.Row():
                with gr.Column(scale=1):
                    input_image = gr.Image(type="numpy", label="Input image")
                    ocr_selector = gr.Radio(choices=['easyocr', 'paddleocr', 'pytesseract', 'kerasocr', 'trocr'], value='easyocr', label="Select OCR Engine")
                    confidence_slider = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.01, label="Detection Confidence Threshold")
                    submit_btn = gr.Button("Detect License Plates", variant="primary")
                
                with gr.Column(scale=1):
                    output_image = gr.Image(type="numpy", label="Annotated image")
                    cropped_plate_gallery = gr.Gallery(label="Cropped plates")

            output_table = gr.Dataframe(label="Detection results")
            
            with gr.Accordion("Understanding the Results", open=False):
                gr.Markdown(
                    """
                    The results table provides the following information:
                    - Plate Number: Sequential number assigned to each detected plate.
                    - Validated Text: The final, cleaned, and validated license plate text.
                    - Country: Estimated country of origin based on the plate format.
                    - Valid: Indicates whether the plate matches a known format.
                    - Raw OCR: The initial text detected by the OCR engine.
                    - Preprocessed OCR: Text detected after image preprocessing.
                    
                    The confidence threshold determines the minimum confidence score for a detection to be considered valid.
                    """
                )
    
        with gr.TabItem("OCR Engine Comparison"):
            with gr.Row():
                comparison_input = gr.Image(type="numpy", label="Input Image for Comparison")
                compare_btn = gr.Button("Compare OCR Engines")
            comparison_output = gr.Dataframe(label="OCR Engine Comparison Results")
    
    # Event handlers
    submit_btn.click(
        fn=process_image,
        inputs=[input_image, ocr_selector, confidence_slider],
        outputs=[output_image, output_table, cropped_plate_gallery]
    )
    
    compare_btn.click(
        fn=compare_ocr_engines,
        inputs=[comparison_input],
        outputs=[comparison_output]
    )

if __name__ == "__main__":
    demo.launch()