|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import requests |
|
import random |
|
from io import BytesIO |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers import DDIMScheduler |
|
from utils import * |
|
from inversion_utils import * |
|
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline |
|
from torch import autocast, inference_mode |
|
import re |
|
|
|
|
|
|
|
def randomize_seed_fn(seed, randomize_seed): |
|
if randomize_seed: |
|
seed = random.randint(0, np.iinfo(np.int32).max) |
|
torch.manual_seed(seed) |
|
return seed |
|
|
|
|
|
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sd_pipe.scheduler.set_timesteps(num_diffusion_steps) |
|
|
|
|
|
with autocast("cuda"), inference_mode(): |
|
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float() |
|
|
|
|
|
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps) |
|
return zs, wts |
|
|
|
|
|
|
|
def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1): |
|
|
|
|
|
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:]) |
|
|
|
|
|
with autocast("cuda"), inference_mode(): |
|
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample |
|
if x0_dec.dim()<4: |
|
x0_dec = x0_dec[None,:,:,:] |
|
img = image_grid(x0_dec) |
|
return img |
|
|
|
|
|
sd_model_id = "runwayml/stable-diffusion-v1-5" |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler") |
|
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device) |
|
|
|
|
|
def get_example(): |
|
case = [ |
|
[ |
|
'examples/source_a_cat_sitting_next_to_a_mirror.jpeg', |
|
'a cat sitting next to a mirror', |
|
'watercolor painting of a cat sitting next to a mirror', |
|
100, |
|
36, |
|
15, |
|
'+Schnauzer dog, -cat', |
|
5.5, |
|
1, |
|
'examples/ddpm_watercolor_painting_a_cat_sitting_next_to_a_mirror.png', |
|
'examples/ddpm_sega_watercolor_painting_a_cat_sitting_next_to_a_mirror_plus_dog_minus_cat.png' |
|
], |
|
[ |
|
'examples/source_a_man_wearing_a_brown_hoodie_in_a_crowded_street.jpeg', |
|
'a man wearing a brown hoodie in a crowded street', |
|
'a robot wearing a brown hoodie in a crowded street', |
|
100, |
|
36, |
|
15, |
|
'+painting', |
|
10, |
|
1, |
|
'examples/ddpm_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png', |
|
'examples/ddpm_sega_painting_of_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png' |
|
], |
|
[ |
|
'examples/source_wall_with_framed_photos.jpeg', |
|
'', |
|
'', |
|
100, |
|
36, |
|
15, |
|
'+pink drawings of muffins', |
|
10, |
|
1, |
|
'examples/ddpm_wall_with_framed_photos.png', |
|
'examples/ddpm_sega_plus_pink_drawings_of_muffins.png' |
|
], |
|
[ |
|
'examples/source_an_empty_room_with_concrete_walls.jpg', |
|
'an empty room with concrete walls', |
|
'glass walls', |
|
100, |
|
36, |
|
17, |
|
'+giant elephant', |
|
10, |
|
1, |
|
'examples/ddpm_glass_walls.png', |
|
'examples/ddpm_sega_glass_walls_gian_elephant.png' |
|
]] |
|
return case |
|
|
|
|
|
def invert_and_reconstruct( |
|
input_image, |
|
do_inversion, |
|
wts, zs, |
|
src_prompt ="", |
|
tar_prompt="", |
|
steps=100, |
|
src_cfg_scale = 3.5, |
|
skip=36, |
|
tar_cfg_scale=15, |
|
|
|
|
|
): |
|
|
|
|
|
x0 = load_512(input_image, device=device) |
|
|
|
|
|
|
|
zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale) |
|
wts = gr.State(value=wts_tensor) |
|
zs = gr.State(value=zs_tensor) |
|
|
|
|
|
output = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale) |
|
|
|
return output, wts, zs, do_inversion |
|
|
|
|
|
|
|
def edit(input_image, |
|
do_inversion, |
|
wts, zs, seed, |
|
src_prompt ="", |
|
tar_prompt="", |
|
steps=100, |
|
skip=36, |
|
tar_cfg_scale=15, |
|
edit_concept="", |
|
sega_edit_guidance=10, |
|
warm_up=None, |
|
|
|
|
|
): |
|
|
|
|
|
|
|
edit_concepts = edit_concept.split(",") |
|
num_concepts = len(edit_concepts) |
|
neg_guidance =[] |
|
for edit_concept in edit_concepts: |
|
edit_concept=edit_concept.strip(" ") |
|
if edit_concept.startswith("-"): |
|
neg_guidance.append(True) |
|
else: |
|
neg_guidance.append(False) |
|
edit_concepts = [concept.strip("+|-") for concept in edit_concepts] |
|
|
|
|
|
default_warm_up_steps = [1]*num_concepts |
|
if warm_up: |
|
digit_pattern = re.compile(r"^\d+$") |
|
warm_up_steps_str = warm_up.split(",") |
|
for i,num_steps in enumerate(warm_up_steps_str[:num_concepts]): |
|
if not digit_pattern.match(num_steps): |
|
raise gr.Error("Invalid value for warm-up steps, using 1 instead") |
|
else: |
|
default_warm_up_steps[i] = int(num_steps) |
|
|
|
|
|
editing_args = dict( |
|
editing_prompt = edit_concepts, |
|
reverse_editing_direction = neg_guidance, |
|
edit_warmup_steps=default_warm_up_steps, |
|
edit_guidance_scale=[sega_edit_guidance]*num_concepts, |
|
edit_threshold=[.95]*num_concepts, |
|
edit_momentum_scale=0.5, |
|
edit_mom_beta=0.6 |
|
) |
|
latnets = wts.value[skip].expand(1, -1, -1, -1) |
|
sega_out = sem_pipe(prompt=tar_prompt,eta=1, latents=latnets, guidance_scale = tar_cfg_scale, |
|
num_images_per_prompt=1, |
|
num_inference_steps=steps, |
|
use_ddpm=True, wts=wts.value, zs=zs.value[skip:], **editing_args) |
|
return sega_out.images[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
intro = """ |
|
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> |
|
Edit Friendly DDPM X Semantic Guidance |
|
</h1> |
|
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em"> |
|
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space: |
|
Inversion and Manipulations </a> X |
|
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">SEGA: Instructing Diffusion using Semantic Dimensions</a> |
|
<p/> |
|
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em"> |
|
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. |
|
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true"> |
|
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
<p/>""" |
|
with gr.Blocks(css='style.css') as demo: |
|
|
|
def reset_do_inversion(): |
|
do_inversion = True |
|
return do_inversion |
|
|
|
|
|
gr.HTML(intro) |
|
wts = gr.State() |
|
zs = gr.State() |
|
do_inversion = gr.State(value=True) |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", interactive=True) |
|
ddpm_edited_image = gr.Image(label=f"DDPM Reconstructed Image", interactive=False) |
|
sega_edited_image = gr.Image(label=f"DDPM + SEGA Edited Image", interactive=False) |
|
input_image.style(height=512, width=512) |
|
ddpm_edited_image.style(height=512, width=512) |
|
sega_edited_image.style(height=512, width=512) |
|
|
|
with gr.Row(): |
|
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="") |
|
with gr.Accordion("SEGA Concepts", open=False, visible=False): |
|
|
|
edit_concept = gr.Textbox(lines=1, label="SEGA Edit Concepts", visible = True, interactive=True) |
|
concepts = gr.Dropdown( |
|
[], value=[], multiselect=True, label="Concepts" ) |
|
|
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=100): |
|
invert_button = gr.Button("Invert") |
|
with gr.Column(scale=1, min_width=100): |
|
edit_button = gr.Button("Edit") |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="") |
|
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True) |
|
src_cfg_scale = gr.Number(value=3.5, label=f"Source Guidance Scale", interactive=True) |
|
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True) |
|
randomize_seed = gr.Checkbox(label='Randomize seed', value=True) |
|
with gr.Column(): |
|
|
|
skip = gr.Slider(minimum=0, maximum=40, value=36, label="Skip Steps", interactive=True) |
|
tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True) |
|
sega_edit_guidance = gr.Slider(value=10, label=f"SEGA Edit Guidance Scale", interactive=True) |
|
warm_up = gr.Textbox(label=f"SEGA Warm-up Steps", interactive=True, placeholder="type #warm-up steps for each concpets (e.g. 2,7,5...") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
invert_button.click( |
|
fn = randomize_seed_fn, |
|
inputs = [seed, randomize_seed], |
|
outputs = [seed], |
|
queue = False).then( |
|
fn=invert_and_reconstruct, |
|
inputs=[input_image, |
|
do_inversion, |
|
wts, zs, |
|
src_prompt, |
|
tar_prompt, |
|
steps, |
|
src_cfg_scale, |
|
skip, |
|
tar_cfg_scale, |
|
], |
|
outputs=[ddpm_edited_image, wts, zs, do_inversion], |
|
) |
|
|
|
edit_button.click( |
|
fn=edit, |
|
inputs=[input_image, |
|
do_inversion, |
|
wts, zs, |
|
seed, |
|
src_prompt, |
|
tar_prompt, |
|
steps, |
|
skip, |
|
tar_cfg_scale, |
|
edit_concept, |
|
sega_edit_guidance, |
|
warm_up, |
|
|
|
|
|
], |
|
outputs=[sega_edited_image], |
|
|
|
) |
|
|
|
input_image.change( |
|
fn = reset_do_inversion, |
|
outputs = [do_inversion] |
|
) |
|
|
|
gr.Examples( |
|
label='Examples', |
|
examples=get_example(), |
|
inputs=[input_image, src_prompt, tar_prompt, steps, |
|
|
|
skip, |
|
tar_cfg_scale, |
|
edit_concept, |
|
sega_edit_guidance, |
|
warm_up, |
|
|
|
ddpm_edited_image, sega_edited_image |
|
], |
|
outputs=[ddpm_edited_image, sega_edited_image], |
|
|
|
|
|
) |
|
|
|
|
|
|
|
demo.queue() |
|
demo.launch(share=False) |
|
|
|
|
|
|
|
|