|
import gradio as gr |
|
import torch |
|
import requests |
|
from io import BytesIO |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers import DDIMScheduler |
|
from utils import * |
|
from inversion_utils import * |
|
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline |
|
from torch import autocast, inference_mode |
|
|
|
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sd_pipe.scheduler.set_timesteps(num_diffusion_steps) |
|
|
|
|
|
with autocast("cuda"), inference_mode(): |
|
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float() |
|
|
|
|
|
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps) |
|
return wt, zs, wts |
|
|
|
|
|
|
|
def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1): |
|
|
|
|
|
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:]) |
|
|
|
|
|
with autocast("cuda"), inference_mode(): |
|
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample |
|
if x0_dec.dim()<4: |
|
x0_dec = x0_dec[None,:,:,:] |
|
img = image_grid(x0_dec) |
|
return img |
|
|
|
|
|
sd_model_id = "runwayml/stable-diffusion-v1-5" |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler") |
|
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device) |
|
|
|
|
|
def edit(input_image, input_image_prompt='', target_prompt='', edit_prompt='', |
|
negative_guidance = False, edit_warmup_steps=5, |
|
edit_guidance_scale=8, guidance_scale=15, skip=36, num_diffusion_steps=100, |
|
): |
|
offsets=(0,0,0,0) |
|
x0 = load_512(input_image, *offsets, device) |
|
|
|
|
|
|
|
wt, zs, wts = invert(x0 =x0 , prompt_src=input_image_prompt, num_diffusion_steps=num_diffusion_steps) |
|
latnets = wts[skip].expand(1, -1, -1, -1) |
|
|
|
eta = 1 |
|
|
|
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=target_prompt, |
|
cfg_scale_tar=guidance_scale, skip=skip, |
|
eta = eta) |
|
|
|
editing_args = dict( |
|
editing_prompt = [edit_prompt], |
|
reverse_editing_direction = [negative_guidance], |
|
edit_warmup_steps=[edit_warmup_steps], |
|
edit_guidance_scale=[edit_guidance_scale], |
|
edit_threshold=[.93], |
|
edit_momentum_scale=0.5, |
|
edit_mom_beta=0.6 |
|
) |
|
sega_out = sem_pipe(prompt=target_prompt,eta=eta, latents=latnets, |
|
num_images_per_prompt=1, |
|
num_inference_steps=num_diffusion_steps, |
|
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args) |
|
return pure_ddpm_out,sega_out.images[0] |
|
|
|
|
|
|
|
inputs = [ |
|
gr.Image(label="input image", shape=(512, 512)), |
|
gr.Textbox(label="input prompt"), |
|
gr.Textbox(label="target prompt"), |
|
gr.Textbox(label="SEGA edit concept"), |
|
gr.Checkbox(label="SEGA negative_guidance"), |
|
gr.Slider(label="warmup steps", minimum=1, maximum=30, value=5), |
|
gr.Slider(label="edit guidance scale", minimum=0, maximum=15, value=3.5), |
|
gr.Slider(label="guidance scale", minimum=7, maximum=18, value=15), |
|
gr.Slider(label="skip", minimum=0, maximum=40, value=36), |
|
gr.Slider(label="num diffusion steps", minimum=0, maximum=300, value=100) |
|
|
|
|
|
] |
|
outputs = [gr.Image(label="DDPM"),gr.Image(label="DDPM+SEGA")] |
|
|
|
|
|
demo = gr.Interface( |
|
fn=edit, |
|
inputs=inputs, |
|
outputs=outputs, |
|
) |
|
demo.launch() |