File size: 12,231 Bytes
c25e2cc 3cdacdf 6255790 5e25b83 6255790 98c6b44 c25e2cc 6255790 e79152d 6255790 09eb804 6255790 6a2fd41 6255790 e79152d 6255790 5e25b83 d7187bf 5e25b83 9b96547 f55706c 27e096e 6255790 7f61c74 fd93e8a 7f61c74 b12e6a1 33f6feb dd85adc 33f6feb b12e6a1 b13a3d4 33f6feb b13a3d4 33f6feb b13a3d4 652f06c 2331708 652f06c 33f6feb 652f06c 33f6feb 652f06c 7f61c74 9cd2450 017df60 05f89f0 017df60 05f89f0 3be3aae 017df60 9cd2450 26f7dab 9df32ef 6255790 017df60 7ff8616 017df60 6255790 7ff8616 6f62fc3 017df60 6255790 774cc5f 9cd2450 017df60 3cc82a2 bc09c01 7cbd357 88f076f 98c6b44 88f076f 98c6b44 88f076f 93e1172 88f076f 98c6b44 61507ea 98c6b44 5e25b83 88f076f 98c6b44 69d2e27 5e25b83 017df60 6f62fc3 1a248f3 3489b04 017df60 9cd2450 6255790 9156300 88f076f db50056 660a4aa 393519b 3489b04 393519b aefef30 c635e15 1ff3548 3489b04 7bb8383 bccbcd8 017df60 7bb8383 017df60 d64d565 77d316c f948a49 853c8df d58e1aa 77d316c 12fd402 853c8df 12fd402 7bb8383 9cd2450 b9a2245 9cd2450 7bb8383 b885715 448a301 4b95bff 12fd402 4b95bff 017df60 bc09c01 017df60 001613c 017df60 d2cde50 017df60 4b95bff d0a0320 001613c 88f076f 448a301 7bb8383 fdf34ba 7bb8383 9cd2450 017df60 b9a2245 9cd2450 017df60 9cd2450 017df60 9cd2450 7078734 7bb8383 017df60 bc09c01 277aca5 9cd2450 017df60 277aca5 b12e6a1 7bb0fbf 9cd84bd 33f6feb 2b4fe45 539fd6d 7f61c74 3489b04 a93910d b30a076 3489b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode
import re
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
return zs, wts
def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
def get_example():
case = [
[
'examples/source_a_cat_sitting_next_to_a_mirror.jpeg',
'a cat sitting next to a mirror',
'watercolor painting of a cat sitting next to a mirror',
100,
36,
15,
'+Schnauzer dog, -cat',
5.5,
1,
'examples/ddpm_watercolor_painting_a_cat_sitting_next_to_a_mirror.png',
'examples/ddpm_sega_watercolor_painting_a_cat_sitting_next_to_a_mirror_plus_dog_minus_cat.png'
],
[
'examples/source_a_man_wearing_a_brown_hoodie_in_a_crowded_street.jpeg',
'a man wearing a brown hoodie in a crowded street',
'a robot wearing a brown hoodie in a crowded street',
100,
36,
15,
'+painting',
10,
1,
'examples/ddpm_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png',
'examples/ddpm_sega_painting_of_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png'
],
[
'examples/source_wall_with_framed_photos.jpeg',
'',
'',
100,
36,
15,
'+pink drawings of muffins',
10,
1,
'examples/ddpm_wall_with_framed_photos.png',
'examples/ddpm_sega_plus_pink_drawings_of_muffins.png'
],
[
'examples/source_an_empty_room_with_concrete_walls.jpg',
'an empty room with concrete walls',
'glass walls',
100,
36,
17,
'+giant elephant',
10,
1,
'examples/ddpm_glass_walls.png',
'examples/ddpm_sega_glass_walls_gian_elephant.png'
]]
return case
def invert_and_reconstruct(
input_image,
do_inversion,
wts, zs,
seed,
src_prompt ="",
tar_prompt="",
steps=100,
src_cfg_scale = 3.5,
skip=36,
tar_cfg_scale=15,
# neg_guidance=False,
):
torch.manual_seed(seed)
x0 = load_512(input_image, device=device)
if do_inversion:
# invert and retrieve noise maps and latent
zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
wts = gr.State(value=wts_tensor)
zs = gr.State(value=zs_tensor)
do_inversion = False
output = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale)
return output, wts, zs, do_inversion
def edit(input_image,
do_inversion,
wts, zs, seed,
src_prompt ="",
tar_prompt="",
steps=100,
skip=36,
tar_cfg_scale=15,
edit_concept="",
sega_edit_guidance=10,
warm_up=None,
# neg_guidance=False,
):
# SEGA
# parse concepts and neg guidance
edit_concepts = edit_concept.split(",")
num_concepts = len(edit_concepts)
neg_guidance =[]
for edit_concept in edit_concepts:
edit_concept=edit_concept.strip(" ")
if edit_concept.startswith("-"):
neg_guidance.append(True)
else:
neg_guidance.append(False)
edit_concepts = [concept.strip("+|-") for concept in edit_concepts]
# parse warm-up steps
default_warm_up_steps = [1]*num_concepts
if warm_up:
digit_pattern = re.compile(r"^\d+$")
warm_up_steps_str = warm_up.split(",")
for i,num_steps in enumerate(warm_up_steps_str[:num_concepts]):
if not digit_pattern.match(num_steps):
raise gr.Error("Invalid value for warm-up steps, using 1 instead")
else:
default_warm_up_steps[i] = int(num_steps)
editing_args = dict(
editing_prompt = edit_concepts,
reverse_editing_direction = neg_guidance,
edit_warmup_steps=default_warm_up_steps,
edit_guidance_scale=[sega_edit_guidance]*num_concepts,
edit_threshold=[.95]*num_concepts,
edit_momentum_scale=0.5,
edit_mom_beta=0.6
)
latnets = wts.value[skip].expand(1, -1, -1, -1)
sega_out = sem_pipe(prompt=tar_prompt,eta=1, latents=latnets, guidance_scale = tar_cfg_scale,
num_images_per_prompt=1,
num_inference_steps=steps,
use_ddpm=True, wts=wts.value, zs=zs.value[skip:], **editing_args)
return sega_out.images[0]
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
Edit Friendly DDPM X Semantic Guidance
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a> X
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">SEGA: Instructing Diffusion using Semantic Dimensions</a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks(css='style.css') as demo:
def reset_do_inversion():
do_inversion = True
return do_inversion
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
do_inversion = gr.State(value=True)
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
ddpm_edited_image = gr.Image(label=f"DDPM Reconstructed Image", interactive=False, visible=False)
sega_edited_image = gr.Image(label=f"DDPM + SEGA Edited Image", interactive=False)
input_image.style(height=512, width=512)
ddpm_edited_image.style(height=512, width=512)
sega_edited_image.style(height=512, width=512)
with gr.Row():
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
with gr.Accordion("SEGA Concepts", open=False):
with gr.Column(scale=1, min_width=100):
edit_concept = gr.Textbox(lines=1, label="SEGA Edit Concepts", visible = True, interactive=True)
# with gr.Column(scale=1, min_width=100):
with gr.Row():
with gr.Column(scale=1, min_width=100):
invert_button = gr.Button("Invert")
with gr.Column(scale=1, min_width=100):
edit_button = gr.Button("Edit")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
#inversion
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="")
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
src_cfg_scale = gr.Number(value=3.5, label=f"Source Guidance Scale", interactive=True)
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
with gr.Column():
# reconstruction
skip = gr.Slider(minimum=0, maximum=40, value=36, label="Skip Steps", interactive=True)
tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True)
sega_edit_guidance = gr.Slider(value=10, label=f"SEGA Edit Guidance Scale", interactive=True)
warm_up = gr.Textbox(label=f"SEGA Warm-up Steps", interactive=True, placeholder="type #warm-up steps for each concpets (e.g. 2,7,5...")
# neg_guidance = gr.Checkbox(label="SEGA Negative Guidance")
# gr.Markdown(help_text)
invert_button.click(
fn = randomize_seed_fn,
inputs = [seed, randomize_seed],
outputs = [seed]
).then(
fn=invert_and_reconstruct,
inputs=[input_image,
do_inversion,
wts, zs,
seed,
src_prompt,
tar_prompt,
steps,
src_cfg_scale,
skip,
tar_cfg_scale,
],
outputs=[ddpm_edited_image, wts, zs, do_inversion],
)
edit_button.click(
fn=edit,
inputs=[input_image,
do_inversion,
wts, zs,
seed,
src_prompt,
tar_prompt,
steps,
skip,
tar_cfg_scale,
edit_concept,
sega_edit_guidance,
warm_up,
# neg_guidance,
],
outputs=[sega_edited_image],
)
input_image.change(
fn = reset_do_inversion,
outputs = [do_inversion]
)
gr.Examples(
label='Examples',
examples=get_example(),
inputs=[input_image, src_prompt, tar_prompt, steps,
# src_cfg_scale,
skip,
tar_cfg_scale,
edit_concept,
sega_edit_guidance,
warm_up,
# neg_guidance,
ddpm_edited_image, sega_edited_image
],
outputs=[ddpm_edited_image, sega_edited_image],
# fn=edit,
# cache_examples=True
)
demo.queue()
demo.launch(share=False)
|