letstalk / src /app.py
Adrian Cowham
changed embedding model to finetuned model
5d02356
import json
import os
from threading import Lock
from typing import Any, Dict, Optional, Tuple
import gradio as gr
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts.chat import (ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate)
from src.core.chunking import chunk_file
from src.core.embedding import embed_files
from src.core.parsing import read_file
VECTOR_STORE = "faiss"
MODEL = "openai"
EMBEDDING = "openai"
MODEL = "gpt-4"
K = 5
USE_VERBOSE = True
API_KEY = os.environ["OPENAI_API_KEY"]
system_template = """
The context below contains excerpts from 'Let's Talk,' by Andrea A. Lunsford. You must only use the information in the context below to formulate your response. If there is not enough information to formulate a response, you must respond with
"I'm sorry, but I can't find the answer to your question in, the book Let's Talk..."
Begin context:
{context}
End context.
{chat_history}
"""
# Create the chat prompt templates
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
qa_prompt = ChatPromptTemplate.from_messages(messages)
class AnswerConversationBufferMemory(ConversationBufferMemory):
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
return super(AnswerConversationBufferMemory, self).save_context(inputs,{'response': outputs['answer']})
def getretriever():
with open("./resources/lets-talk.pdf", 'rb') as uploaded_file:
try:
file = read_file(uploaded_file)
except Exception as e:
print(e)
chunked_file = chunk_file(file, chunk_size=512, chunk_overlap=0)
folder_index = embed_files(files=[chunked_file])
return folder_index.index.as_retriever(verbose=True, search_type="similarity", search_kwargs={"k": K})
retriever = getretriever()
def predict(message):
print(message)
msgJson = json.loads(message)
print(msgJson)
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
qa_prompt = ChatPromptTemplate.from_messages(messages)
llm = ChatOpenAI(
openai_api_key=API_KEY,
model_name=MODEL,
verbose=True)
memory = AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True)
for msg in msgJson["history"]:
memory.save_context({"input": msg[0]}, {"answer": msg[1]})
chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
return_source_documents=USE_VERBOSE,
memory=memory,
verbose=USE_VERBOSE,
combine_docs_chain_kwargs={"prompt": qa_prompt})
chain.rephrase_question = False
lock = Lock()
lock.acquire()
try:
output = chain({"question": msgJson["question"]})
output = output["answer"]
except Exception as e:
print(e)
raise e
finally:
lock.release()
return output
def getanswer(chain, question, history):
if hasattr(chain, "value"):
chain = chain.value
if hasattr(history, "value"):
history = history.value
if hasattr(question, "value"):
question = question.value
history = history or []
lock = Lock()
lock.acquire()
try:
output = chain({"question": question})
output = output["answer"]
history.append((question, output))
except Exception as e:
raise e
finally:
lock.release()
return history, history, gr.update(value="")
def load_chain(inputs = None):
llm = ChatOpenAI(
openai_api_key=API_KEY,
model_name=MODEL,
verbose=True)
chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
return_source_documents=USE_VERBOSE,
memory=AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=USE_VERBOSE,
combine_docs_chain_kwargs={"prompt": qa_prompt})
return chain
with gr.Blocks() as block:
with gr.Row():
with gr.Column(scale=0.75):
with gr.Row():
gr.Markdown("<h1>Let&apos;s Talk...</h1>")
with gr.Row():
gr.Markdown("by Andrea Lunsford")
chatbot = gr.Chatbot(elem_id="chatbot").style(height=600)
with gr.Row():
message = gr.Textbox(
label="",
placeholder="Let's Talk...",
lines=1,
)
with gr.Row():
submit = gr.Button(value="Send", variant="primary", scale=1)
state = gr.State()
chain_state = gr.State(load_chain)
submit.click(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
message.submit(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
with gr.Column(scale=0.25):
with gr.Row():
gr.Markdown("<h1><center>Suggestions</center></h1>")
ex1 = gr.Button(value="How can I make myself be heard?", variant="primary")
ex1.click(getanswer, inputs=[chain_state, ex1, state], outputs=[chatbot, state, message])
ex2 = gr.Button(value="How can I connect with people I disagree with?", variant="primary")
ex2.click(getanswer, inputs=[chain_state, ex2, state], outputs=[chatbot, state, message])
ex3 = gr.Button(value="How do I come up with ideas for my essay?", variant="primary")
ex3.click(getanswer, inputs=[chain_state, ex3, state], outputs=[chatbot, state, message])
ex4 = gr.Button(value="My professor reviewed my first draft. She circled a sentence and said I need to support it more. How do I do that?", variant="primary")
ex4.click(getanswer, inputs=[chain_state, ex4, state], outputs=[chatbot, state, message])
ex5 = gr.Button(value="How do I cite a Reddit thread?", variant="primary")
ex5.click(getanswer, inputs=[chain_state, ex5, state], outputs=[chatbot, state, message])
predictBtn = gr.Button(value="Predict", visible=False)
predictBtn.click(predict, inputs=[message], outputs=[message])
block.launch(debug=True)