File size: 6,117 Bytes
0e2eb99
e71c4e6
 
 
 
 
 
 
 
 
 
 
 
e031d5d
 
 
e71c4e6
 
 
 
5d02356
e71c4e6
 
 
 
06150c8
1fa049e
0c47d68
0e2eb99
e71c4e6
0e2eb99
 
e71c4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa049e
e71c4e6
 
 
 
 
 
5d02356
e71c4e6
 
 
 
0e2eb99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71c4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03cc8ac
e71c4e6
1fa049e
e71c4e6
 
 
 
 
1fa049e
e71c4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa049e
e71c4e6
1fa049e
e71c4e6
1fa049e
e71c4e6
 
1fa049e
 
 
 
 
 
0e2eb99
 
 
e71c4e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import json
import os
from threading import Lock
from typing import Any, Dict, Optional, Tuple

import gradio as gr
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts.chat import (ChatPromptTemplate,
                                    HumanMessagePromptTemplate,
                                    SystemMessagePromptTemplate)

from src.core.chunking import chunk_file
from src.core.embedding import embed_files
from src.core.parsing import read_file

VECTOR_STORE = "faiss"
MODEL = "openai"
EMBEDDING = "openai"
MODEL = "gpt-4"
K = 5
USE_VERBOSE = True
API_KEY = os.environ["OPENAI_API_KEY"]
system_template = """
The context below contains excerpts from 'Let's Talk,' by Andrea A. Lunsford. You must only use the information in the context below to formulate your response. If there is not enough information to formulate  a response, you must respond with
"I'm sorry, but I can't find the answer to your question in, the book Let's Talk..."

Begin context:
{context}
End context.

{chat_history}
"""

# Create the chat prompt templates
messages = [
  SystemMessagePromptTemplate.from_template(system_template),
  HumanMessagePromptTemplate.from_template("{question}")
]
qa_prompt = ChatPromptTemplate.from_messages(messages)

class AnswerConversationBufferMemory(ConversationBufferMemory):
  def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
    return super(AnswerConversationBufferMemory, self).save_context(inputs,{'response': outputs['answer']})

def getretriever():
  with open("./resources/lets-talk.pdf", 'rb') as uploaded_file:
    try:
      file = read_file(uploaded_file)
    except Exception as e:
      print(e)

  chunked_file = chunk_file(file, chunk_size=512, chunk_overlap=0)
  folder_index = embed_files(files=[chunked_file])
  return folder_index.index.as_retriever(verbose=True, search_type="similarity", search_kwargs={"k": K})

retriever = getretriever()

def predict(message):
  print(message)
  msgJson = json.loads(message)
  print(msgJson)
  messages = [
    SystemMessagePromptTemplate.from_template(system_template),
    HumanMessagePromptTemplate.from_template("{question}")
  ]
  qa_prompt = ChatPromptTemplate.from_messages(messages)

  llm = ChatOpenAI(
        openai_api_key=API_KEY,
        model_name=MODEL,
        verbose=True)
  memory = AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True)
  for msg in msgJson["history"]:
    memory.save_context({"input": msg[0]}, {"answer": msg[1]})

  chain = ConversationalRetrievalChain.from_llm(
    llm,
    retriever=retriever,
    return_source_documents=USE_VERBOSE,
    memory=memory,
    verbose=USE_VERBOSE,
    combine_docs_chain_kwargs={"prompt": qa_prompt})
  chain.rephrase_question = False
  lock = Lock()
  lock.acquire()
  try:
    output = chain({"question": msgJson["question"]})
    output = output["answer"]
  except Exception as e:
    print(e)
    raise e
  finally:
    lock.release()
  return output

def getanswer(chain, question, history):
  if hasattr(chain, "value"):
    chain = chain.value
  if hasattr(history, "value"):
    history = history.value
  if hasattr(question, "value"):
    question = question.value

  history = history or []
  lock = Lock()
  lock.acquire()
  try:
    output = chain({"question": question})
    output = output["answer"]
    history.append((question, output))
  except Exception as e:
    raise e
  finally:
    lock.release()
  return history, history, gr.update(value="")

def load_chain(inputs = None):
  llm = ChatOpenAI(
        openai_api_key=API_KEY,
        model_name=MODEL,
        verbose=True)
  chain = ConversationalRetrievalChain.from_llm(
    llm,
    retriever=retriever,
    return_source_documents=USE_VERBOSE,
    memory=AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True),
    verbose=USE_VERBOSE,
    combine_docs_chain_kwargs={"prompt": qa_prompt})
  return chain

with gr.Blocks() as block:
  with gr.Row():
    with gr.Column(scale=0.75):
      with gr.Row():
        gr.Markdown("<h1>Let&apos;s Talk...</h1>")
      with gr.Row():
        gr.Markdown("by Andrea Lunsford")
      chatbot = gr.Chatbot(elem_id="chatbot").style(height=600)

      with gr.Row():
          message = gr.Textbox(
              label="",
              placeholder="Let's Talk...",
              lines=1,
          )
      with gr.Row():
          submit = gr.Button(value="Send", variant="primary", scale=1)

      state = gr.State()
      chain_state = gr.State(load_chain)

      submit.click(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
      message.submit(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])

    with gr.Column(scale=0.25):
      with gr.Row():
        gr.Markdown("<h1><center>Suggestions</center></h1>")
      ex1 = gr.Button(value="How can I make myself be heard?", variant="primary")
      ex1.click(getanswer, inputs=[chain_state, ex1, state], outputs=[chatbot, state, message])
      ex2 = gr.Button(value="How can I connect with people I disagree with?", variant="primary")
      ex2.click(getanswer, inputs=[chain_state, ex2, state], outputs=[chatbot, state, message])
      ex3 = gr.Button(value="How do I come up with ideas for my essay?", variant="primary")
      ex3.click(getanswer, inputs=[chain_state, ex3, state], outputs=[chatbot, state, message])

      ex4 = gr.Button(value="My professor reviewed my first draft. She circled a sentence and said I need to support it more. How do I do that?", variant="primary")
      ex4.click(getanswer, inputs=[chain_state, ex4, state], outputs=[chatbot, state, message])

      ex5 = gr.Button(value="How do I cite a Reddit thread?", variant="primary")
      ex5.click(getanswer, inputs=[chain_state, ex5, state], outputs=[chatbot, state, message])

      predictBtn = gr.Button(value="Predict", visible=False)
      predictBtn.click(predict, inputs=[message], outputs=[message])

block.launch(debug=True)