Spaces:
Sleeping
Sleeping
adityas2410
commited on
Create segment_functions.py
Browse files- segment_functions.py +69 -0
segment_functions.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, SamModel, SamProcessor
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
|
7 |
+
# Image Segmentation Model
|
8 |
+
sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
9 |
+
sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
|
10 |
+
|
11 |
+
def show_colored_mask(mask, combined_mask, color):
|
12 |
+
"""
|
13 |
+
Add a single-colored mask to the combined mask.
|
14 |
+
Args:
|
15 |
+
mask (numpy.ndarray): Binary mask to overlay.
|
16 |
+
combined_mask (numpy.ndarray): Combined RGBA mask.
|
17 |
+
color (tuple): RGBA color for the mask.
|
18 |
+
"""
|
19 |
+
if mask.ndim == 3: # If mask has channels then take the first one
|
20 |
+
mask = mask[0]
|
21 |
+
mask = mask.squeeze() # Remove extra dimension
|
22 |
+
|
23 |
+
mask_binary = (mask > 0).astype(np.uint8) # Ensure the mask is binary
|
24 |
+
|
25 |
+
# Apply the color to the mask
|
26 |
+
for c in range(3): # RGB channels
|
27 |
+
combined_mask[:, :, c] = np.where(mask_binary > 0, color[c], combined_mask[:, :, c])
|
28 |
+
combined_mask[:, :, 3] = np.where(mask_binary > 0, color[3], combined_mask[:, :, 3]) # Alpha channel (transperency)
|
29 |
+
|
30 |
+
def segment_image(input_image, input_points):
|
31 |
+
"""
|
32 |
+
Perform image segmentation and overlay masks with a single solid color.
|
33 |
+
Args:
|
34 |
+
input_image (PIL.Image): The input image.
|
35 |
+
input_points (list): List of points [[x, y], ...].
|
36 |
+
Returns:
|
37 |
+
PIL.Image: Image with masks applied in one solid red color.
|
38 |
+
"""
|
39 |
+
# Convert input points to a 4D tensor
|
40 |
+
input_points_tensor = torch.tensor(input_points, dtype=torch.float32).unsqueeze(0).unsqueeze(1)
|
41 |
+
|
42 |
+
# Process input and run the SAM model
|
43 |
+
inputs = sam_processor(input_image, input_points=input_points_tensor, return_tensors="pt")
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = sam_model(**inputs)
|
46 |
+
|
47 |
+
# Post-process masks
|
48 |
+
predicted_masks = sam_processor.image_processor.post_process_masks(
|
49 |
+
outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
|
50 |
+
)
|
51 |
+
|
52 |
+
# Define a solid red color with full opacity
|
53 |
+
single_color = (255, 0, 0, 100)
|
54 |
+
|
55 |
+
# Prepare a combined RGBA mask
|
56 |
+
image_size = input_image.size
|
57 |
+
combined_mask = np.zeros((image_size[1], image_size[0], 4), dtype=np.uint8)
|
58 |
+
|
59 |
+
# Apply all masks using the single color
|
60 |
+
for mask in predicted_masks[0]:
|
61 |
+
mask = mask.numpy()
|
62 |
+
show_colored_mask(mask, combined_mask, single_color)
|
63 |
+
|
64 |
+
# Combine the mask with the original image
|
65 |
+
input_image_rgba = input_image.convert("RGBA") # Red Green Blue Alpha
|
66 |
+
combined_image = Image.alpha_composite(input_image_rgba, Image.fromarray(combined_mask, "RGBA"))
|
67 |
+
|
68 |
+
return combined_image
|
69 |
+
|