adityas2410 commited on
Commit
0620a22
·
verified ·
1 Parent(s): 029c042

Create segment_functions.py

Browse files
Files changed (1) hide show
  1. segment_functions.py +69 -0
segment_functions.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline, SamModel, SamProcessor
2
+ import torch
3
+ import numpy as np
4
+ from PIL import Image
5
+ import requests
6
+
7
+ # Image Segmentation Model
8
+ sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
9
+ sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
10
+
11
+ def show_colored_mask(mask, combined_mask, color):
12
+ """
13
+ Add a single-colored mask to the combined mask.
14
+ Args:
15
+ mask (numpy.ndarray): Binary mask to overlay.
16
+ combined_mask (numpy.ndarray): Combined RGBA mask.
17
+ color (tuple): RGBA color for the mask.
18
+ """
19
+ if mask.ndim == 3: # If mask has channels then take the first one
20
+ mask = mask[0]
21
+ mask = mask.squeeze() # Remove extra dimension
22
+
23
+ mask_binary = (mask > 0).astype(np.uint8) # Ensure the mask is binary
24
+
25
+ # Apply the color to the mask
26
+ for c in range(3): # RGB channels
27
+ combined_mask[:, :, c] = np.where(mask_binary > 0, color[c], combined_mask[:, :, c])
28
+ combined_mask[:, :, 3] = np.where(mask_binary > 0, color[3], combined_mask[:, :, 3]) # Alpha channel (transperency)
29
+
30
+ def segment_image(input_image, input_points):
31
+ """
32
+ Perform image segmentation and overlay masks with a single solid color.
33
+ Args:
34
+ input_image (PIL.Image): The input image.
35
+ input_points (list): List of points [[x, y], ...].
36
+ Returns:
37
+ PIL.Image: Image with masks applied in one solid red color.
38
+ """
39
+ # Convert input points to a 4D tensor
40
+ input_points_tensor = torch.tensor(input_points, dtype=torch.float32).unsqueeze(0).unsqueeze(1)
41
+
42
+ # Process input and run the SAM model
43
+ inputs = sam_processor(input_image, input_points=input_points_tensor, return_tensors="pt")
44
+ with torch.no_grad():
45
+ outputs = sam_model(**inputs)
46
+
47
+ # Post-process masks
48
+ predicted_masks = sam_processor.image_processor.post_process_masks(
49
+ outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
50
+ )
51
+
52
+ # Define a solid red color with full opacity
53
+ single_color = (255, 0, 0, 100)
54
+
55
+ # Prepare a combined RGBA mask
56
+ image_size = input_image.size
57
+ combined_mask = np.zeros((image_size[1], image_size[0], 4), dtype=np.uint8)
58
+
59
+ # Apply all masks using the single color
60
+ for mask in predicted_masks[0]:
61
+ mask = mask.numpy()
62
+ show_colored_mask(mask, combined_mask, single_color)
63
+
64
+ # Combine the mask with the original image
65
+ input_image_rgba = input_image.convert("RGBA") # Red Green Blue Alpha
66
+ combined_image = Image.alpha_composite(input_image_rgba, Image.fromarray(combined_mask, "RGBA"))
67
+
68
+ return combined_image
69
+