aditi2222's picture
Create app.py
4405e03
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("aditi2222/automatic_title_generation")
model = AutoModelForSeq2SeqLM.from_pretrained("aditi2222/automatic_title_generation")
def tokenize_data(text):
# Tokenize the review body
input_ = str(text) + ' </s>'
max_len = 120
# tokenize inputs
tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt')
inputs={"input_ids": tokenized_inputs['input_ids'],
"attention_mask": tokenized_inputs['attention_mask']}
return inputs
def generate_answers(text):
inputs = tokenize_data(text)
results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True,
max_length=120,
top_k=120,
top_p=0.98,
early_stopping=True,
num_return_sequences=1)
answer = tokenizer.decode(results[0], skip_special_tokens=True)
return answer
iface = gr.Interface(fn=generate_answers, inputs=['text'], outputs=["text"])
iface.launch(inline=False, share=True)