snap2scene / helpers.py
adirathor07's picture
added test images
bdfffc9
import utils.binvox_rw as binvox_rw
import numpy as np
import plotly.graph_objects as go
from models.encoder import Encoder
from models.decoder import Decoder
from models.merger import Merger
from models.refiner import Refiner
from config import cfg
import torch
from datetime import datetime as dt
import utils.data_transforms
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
# device='cpu'
cfg.CONST.WEIGHTS='saved_model/Pix2Vox.pth'
def read_binvox(file) -> np.ndarray:
model = binvox_rw.read_as_3d_array(file)
return model.data.astype(np.uint8)
def voxel_to_plotly(voxels):
x, y, z = voxels.nonzero()
fig = go.Figure(data=[
go.Scatter3d(
x=x, y=y, z=z,
mode='markers',
marker=dict(size=3, color=z, colorscale='Viridis', opacity=0.7)
)
])
fig.update_layout(scene=dict(aspectmode='data'))
return fig
# when gpu is not available
def remove_module_prefix(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
new_state_dict[k[7:]] = v
else:
new_state_dict[k] = v
return new_state_dict
IMG_SIZE = cfg.CONST.IMG_H, cfg.CONST.IMG_W
CROP_SIZE = cfg.CONST.CROP_IMG_H, cfg.CONST.CROP_IMG_W
test_transforms = utils.data_transforms.Compose([
utils.data_transforms.CenterCrop(IMG_SIZE, CROP_SIZE),
utils.data_transforms.RandomBackground(cfg.TEST.RANDOM_BG_COLOR_RANGE),
utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD),
utils.data_transforms.ToTensor(),
])
def predict_voxel_from_images(rendering_images):
transformed_images = test_transforms(rendering_images)
encoder = Encoder(cfg)
decoder = Decoder(cfg)
refiner = Refiner(cfg)
merger = Merger(cfg)
print('[INFO] %s Loading weights from %s ...' % (dt.now(), cfg.CONST.WEIGHTS))
checkpoint = torch.load(cfg.CONST.WEIGHTS, weights_only=False, map_location=device)
if torch.cuda.is_available():
encoder = torch.nn.DataParallel(encoder).cuda()
decoder = torch.nn.DataParallel(decoder).cuda()
refiner = torch.nn.DataParallel(refiner).cuda()
merger = torch.nn.DataParallel(merger).cuda()
encoder_state_dict=checkpoint['encoder_state_dict']
decoder_state_dict=checkpoint['decoder_state_dict']
merger_state_dict=checkpoint['merger_state_dict']
refiner_state_dict = checkpoint['refiner_state_dict']
else:
encoder_state_dict = remove_module_prefix(checkpoint['encoder_state_dict'])
decoder_state_dict = remove_module_prefix(checkpoint['decoder_state_dict'])
merger_state_dict = remove_module_prefix(checkpoint['merger_state_dict'])
refiner_state_dict = remove_module_prefix(checkpoint['refiner_state_dict'])
epoch_idx = checkpoint['epoch_idx']
encoder.load_state_dict(encoder_state_dict)
decoder.load_state_dict(decoder_state_dict)
if cfg.NETWORK.USE_REFINER:
refiner.load_state_dict(refiner_state_dict)
if cfg.NETWORK.USE_MERGER:
merger.load_state_dict(merger_state_dict)
encoder.eval()
decoder.eval()
merger.eval()
refiner.eval()
with torch.no_grad():
transformed_images = transformed_images.unsqueeze(0) #adding the batch_dim
transformed_images = transformed_images.to(device)
# print(rendering_images.shape)
image_features = encoder(transformed_images)
print(image_features.shape)
raw_features, generated_volume = decoder(image_features)
print(generated_volume.shape)
if cfg.NETWORK.USE_MERGER:
generated_volume = merger(raw_features, generated_volume)
else:
generated_volume = torch.mean(generated_volume, dim=1)
# encoder_loss = bce_loss(generated_volume, ground_truth_volume) * 10
if cfg.NETWORK.USE_REFINER:
generated_volume = refiner(generated_volume)
# refiner_loss = bce_loss(generated_volume, ground_truth_volume) * 10
else:
# refiner_loss = encoder_loss
pass
generated_volume=generated_volume.squeeze(0)
gv = generated_volume.cpu().numpy()
gv = (gv >= 0.5).astype(np.uint8)
torch.cuda.empty_cache()
return gv