mface / refacer.py
adfly450's picture
Upload 10 files
7e15958 verified
raw
history blame
11.2 kB
import cv2
import onnxruntime as rt
import sys
from insightface.app import FaceAnalysis
sys.path.insert(1, './recognition')
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
import os.path as osp
import os
from pathlib import Path
from tqdm import tqdm
import ffmpeg
import random
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor
from insightface.model_zoo.inswapper import INSwapper
import psutil
from enum import Enum
from insightface.app.common import Face
from insightface.utils.storage import ensure_available
import re
import subprocess
class RefacerMode(Enum):
CPU, CUDA, COREML, TENSORRT = range(1, 5)
class Refacer:
def __init__(self,force_cpu=False,colab_performance=False):
self.first_face = False
self.force_cpu = force_cpu
self.colab_performance = colab_performance
self.__check_encoders()
self.__check_providers()
self.total_mem = psutil.virtual_memory().total
self.__init_apps()
def __check_providers(self):
if self.force_cpu :
self.providers = ['CPUExecutionProvider']
else:
self.providers = rt.get_available_providers()
rt.set_default_logger_severity(4)
self.sess_options = rt.SessionOptions()
self.sess_options.execution_mode = rt.ExecutionMode.ORT_SEQUENTIAL
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
self.mode = RefacerMode.CPU
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"CPU mode with providers {self.providers}")
elif self.colab_performance:
self.mode = RefacerMode.TENSORRT
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"TENSORRT mode with providers {self.providers}")
elif 'CoreMLExecutionProvider' in self.providers:
self.mode = RefacerMode.COREML
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"CoreML mode with providers {self.providers}")
elif 'CUDAExecutionProvider' in self.providers:
self.mode = RefacerMode.CUDA
self.use_num_cpus = 2
self.sess_options.intra_op_num_threads = 1
if 'TensorrtExecutionProvider' in self.providers:
self.providers.remove('TensorrtExecutionProvider')
print(f"CUDA mode with providers {self.providers}")
"""
elif 'TensorrtExecutionProvider' in self.providers:
self.mode = RefacerMode.TENSORRT
#self.use_num_cpus = 1
#self.sess_options.intra_op_num_threads = 1
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"TENSORRT mode with providers {self.providers}")
"""
def __init_apps(self):
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
model_path = os.path.join(assets_dir, 'det_10g.onnx')
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_detector = SCRFD(model_path,sess_face)
self.face_detector.prepare(0,input_size=(640, 640))
model_path = os.path.join(assets_dir , 'w600k_r50.onnx')
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.rec_app = ArcFaceONNX(model_path,sess_rec)
self.rec_app.prepare(0)
model_path = 'inswapper_128.onnx'
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_swapper = INSwapper(model_path,sess_swap)
def prepare_faces(self, faces):
self.replacement_faces=[]
for face in faces:
#image1 = cv2.imread(face.origin)
if "origin" in face:
face_threshold = face['threshold']
bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
if len(kpss1)<1:
raise Exception('No face detected on "Face to replace" image')
feat_original = self.rec_app.get(face['origin'], kpss1[0])
else:
face_threshold = 0
self.first_face = True
feat_original = None
print('No origin image: First face change')
#image2 = cv2.imread(face.destination)
_faces = self.__get_faces(face['destination'],max_num=1)
if len(_faces)<1:
raise Exception('No face detected on "Destination face" image')
self.replacement_faces.append((feat_original,_faces[0],face_threshold))
def __convert_video(self,video_path,output_video_path):
if self.video_has_audio:
print("Merging audio with the refaced video...")
new_path = output_video_path + str(random.randint(0,999)) + "_c.mp4"
#stream = ffmpeg.input(output_video_path)
in1 = ffmpeg.input(output_video_path)
in2 = ffmpeg.input(video_path)
out = ffmpeg.output(in1.video, in2.audio, new_path,video_bitrate=self.ffmpeg_video_bitrate,vcodec=self.ffmpeg_video_encoder)
out.run(overwrite_output=True,quiet=True)
else:
new_path = output_video_path
print("The video doesn't have audio, so post-processing is not necessary")
print(f"The process has finished.\nThe refaced video can be found at {os.path.abspath(new_path)}")
return new_path
def __get_faces(self,frame,max_num=0):
bboxes, kpss = self.face_detector.detect(frame,max_num=max_num,metric='default')
if bboxes.shape[0] == 0:
return []
ret = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = None
if kpss is not None:
kps = kpss[i]
face = Face(bbox=bbox, kps=kps, det_score=det_score)
face.embedding = self.rec_app.get(frame, kps)
ret.append(face)
return ret
def process_first_face(self,frame):
faces = self.__get_faces(frame,max_num=1)
if len(faces) != 0:
frame = self.face_swapper.get(frame, faces[0], self.replacement_faces[0][1], paste_back=True)
return frame
def process_faces(self,frame):
faces = self.__get_faces(frame,max_num=0)
for rep_face in self.replacement_faces:
for i in range(len(faces) - 1, -1, -1):
sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
if sim>=rep_face[2]:
frame = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
del faces[i]
break
return frame
def __check_video_has_audio(self,video_path):
self.video_has_audio = False
probe = ffmpeg.probe(video_path)
audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
if audio_stream is not None:
self.video_has_audio = True
def reface_group(self, faces, frames, output):
with ThreadPoolExecutor(max_workers = self.use_num_cpus) as executor:
if self.first_face:
results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames),desc="Processing frames"))
else:
results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames),desc="Processing frames"))
for result in results:
output.write(result)
def reface(self, video_path, faces):
self.__check_video_has_audio(video_path)
output_video_path = os.path.join('out',Path(video_path).name)
self.prepare_faces(faces)
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"Total frames: {total_frames}")
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
frames=[]
self.k = 1
with tqdm(total=total_frames,desc="Extracting frames") as pbar:
while cap.isOpened():
flag, frame = cap.read()
if flag and len(frame)>0:
frames.append(frame.copy())
pbar.update()
else:
break
if (len(frames) > 1000):
self.reface_group(faces,frames,output)
frames=[]
cap.release()
pbar.close()
self.reface_group(faces,frames,output)
frames=[]
output.release()
return self.__convert_video(video_path,output_video_path)
def __try_ffmpeg_encoder(self, vcodec):
print(f"Trying FFMPEG {vcodec} encoder")
command = ['ffmpeg', '-y', '-f','lavfi','-i','testsrc=duration=1:size=1280x720:rate=30','-vcodec',vcodec,'testsrc.mp4']
try:
subprocess.run(command, check=True, capture_output=True).stderr
except subprocess.CalledProcessError as e:
print(f"FFMPEG {vcodec} encoder doesn't work -> Disabled.")
return False
print(f"FFMPEG {vcodec} encoder works")
return True
def __check_encoders(self):
self.ffmpeg_video_encoder='libx264'
self.ffmpeg_video_bitrate='0'
pattern = r"encoders: ([a-zA-Z0-9_]+(?: [a-zA-Z0-9_]+)*)"
command = ['ffmpeg', '-codecs', '--list-encoders']
commandout = subprocess.run(command, check=True, capture_output=True).stdout
result = commandout.decode('utf-8').split('\n')
for r in result:
if "264" in r:
encoders = re.search(pattern, r).group(1).split(' ')
for v_c in Refacer.VIDEO_CODECS:
for v_k in encoders:
if v_c == v_k:
if self.__try_ffmpeg_encoder(v_k):
self.ffmpeg_video_encoder=v_k
self.ffmpeg_video_bitrate=Refacer.VIDEO_CODECS[v_k]
print(f"Video codec for FFMPEG: {self.ffmpeg_video_encoder}")
return
VIDEO_CODECS = {
'h264_videotoolbox':'0', #osx HW acceleration
'h264_nvenc':'0', #NVIDIA HW acceleration
#'h264_qsv', #Intel HW acceleration
#'h264_vaapi', #Intel HW acceleration
#'h264_omx', #HW acceleration
'libx264':'0' #No HW acceleration
}