Ii
commited on
Update refacer.py
Browse files- refacer.py +28 -246
refacer.py
CHANGED
@@ -1,262 +1,44 @@
|
|
|
|
1 |
import cv2
|
2 |
-
import
|
3 |
-
import sys
|
4 |
from insightface.app import FaceAnalysis
|
5 |
-
|
6 |
-
from
|
7 |
-
from arcface_onnx import ArcFaceONNX
|
8 |
-
import os.path as osp
|
9 |
-
import os
|
10 |
-
from pathlib import Path
|
11 |
-
from tqdm import tqdm
|
12 |
-
import ffmpeg
|
13 |
-
import random
|
14 |
-
import multiprocessing as mp
|
15 |
-
from concurrent.futures import ThreadPoolExecutor
|
16 |
-
from insightface.model_zoo.inswapper import INSwapper
|
17 |
-
import psutil
|
18 |
-
from enum import Enum
|
19 |
-
from insightface.app.common import Face
|
20 |
-
from insightface.utils.storage import ensure_available
|
21 |
-
import re
|
22 |
-
import subprocess
|
23 |
-
|
24 |
-
class RefacerMode(Enum):
|
25 |
-
CPU, CUDA, COREML, TENSORRT = range(1, 5)
|
26 |
|
27 |
class Refacer:
|
28 |
-
def __init__(self,force_cpu=False,colab_performance=False):
|
29 |
-
self.first_face = False
|
30 |
self.force_cpu = force_cpu
|
31 |
self.colab_performance = colab_performance
|
32 |
-
self.
|
33 |
-
self.__check_providers()
|
34 |
-
self.total_mem = psutil.virtual_memory().total
|
35 |
-
self.__init_apps()
|
36 |
-
|
37 |
-
def __check_providers(self):
|
38 |
-
if self.force_cpu :
|
39 |
-
self.providers = ['CPUExecutionProvider']
|
40 |
-
else:
|
41 |
-
self.providers = rt.get_available_providers()
|
42 |
-
rt.set_default_logger_severity(4)
|
43 |
-
self.sess_options = rt.SessionOptions()
|
44 |
-
self.sess_options.execution_mode = rt.ExecutionMode.ORT_SEQUENTIAL
|
45 |
-
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
|
46 |
-
|
47 |
-
if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
|
48 |
-
self.mode = RefacerMode.CPU
|
49 |
-
self.use_num_cpus = mp.cpu_count()-1
|
50 |
-
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
51 |
-
print(f"CPU mode with providers {self.providers}")
|
52 |
-
elif self.colab_performance:
|
53 |
-
self.mode = RefacerMode.TENSORRT
|
54 |
-
self.use_num_cpus = mp.cpu_count()-1
|
55 |
-
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
56 |
-
print(f"TENSORRT mode with providers {self.providers}")
|
57 |
-
elif 'CoreMLExecutionProvider' in self.providers:
|
58 |
-
self.mode = RefacerMode.COREML
|
59 |
-
self.use_num_cpus = mp.cpu_count()-1
|
60 |
-
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
61 |
-
print(f"CoreML mode with providers {self.providers}")
|
62 |
-
elif 'CUDAExecutionProvider' in self.providers:
|
63 |
-
self.mode = RefacerMode.CUDA
|
64 |
-
self.use_num_cpus = 2
|
65 |
-
self.sess_options.intra_op_num_threads = 1
|
66 |
-
if 'TensorrtExecutionProvider' in self.providers:
|
67 |
-
self.providers.remove('TensorrtExecutionProvider')
|
68 |
-
print(f"CUDA mode with providers {self.providers}")
|
69 |
-
"""
|
70 |
-
elif 'TensorrtExecutionProvider' in self.providers:
|
71 |
-
self.mode = RefacerMode.TENSORRT
|
72 |
-
#self.use_num_cpus = 1
|
73 |
-
#self.sess_options.intra_op_num_threads = 1
|
74 |
-
self.use_num_cpus = mp.cpu_count()-1
|
75 |
-
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
76 |
-
print(f"TENSORRT mode with providers {self.providers}")
|
77 |
-
"""
|
78 |
-
|
79 |
-
|
80 |
-
def __init_apps(self):
|
81 |
-
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
|
82 |
-
|
83 |
-
model_path = os.path.join(assets_dir, 'det_10g.onnx')
|
84 |
-
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
|
85 |
-
self.face_detector = SCRFD(model_path,sess_face)
|
86 |
-
self.face_detector.prepare(0,input_size=(640, 640))
|
87 |
-
|
88 |
-
model_path = os.path.join(assets_dir , 'w600k_r50.onnx')
|
89 |
-
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
|
90 |
-
self.rec_app = ArcFaceONNX(model_path,sess_rec)
|
91 |
-
self.rec_app.prepare(0)
|
92 |
-
|
93 |
-
model_path = 'inswapper_128.onnx'
|
94 |
-
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
|
95 |
-
self.face_swapper = INSwapper(model_path,sess_swap)
|
96 |
|
97 |
-
def
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
face_threshold = face['threshold']
|
103 |
-
bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
|
104 |
-
if len(kpss1)<1:
|
105 |
-
raise Exception('No face detected on "Face to replace" image')
|
106 |
-
feat_original = self.rec_app.get(face['origin'], kpss1[0])
|
107 |
-
else:
|
108 |
-
face_threshold = 0
|
109 |
-
self.first_face = True
|
110 |
-
feat_original = None
|
111 |
-
print('No origin image: First face change')
|
112 |
-
#image2 = cv2.imread(face.destination)
|
113 |
-
_faces = self.__get_faces(face['destination'],max_num=1)
|
114 |
-
if len(_faces)<1:
|
115 |
-
raise Exception('No face detected on "Destination face" image')
|
116 |
-
self.replacement_faces.append((feat_original,_faces[0],face_threshold))
|
117 |
-
|
118 |
-
def __convert_video(self,video_path,output_video_path):
|
119 |
-
if self.video_has_audio:
|
120 |
-
print("Merging audio with the refaced video...")
|
121 |
-
new_path = output_video_path + str(random.randint(0,999)) + "_c.mp4"
|
122 |
-
#stream = ffmpeg.input(output_video_path)
|
123 |
-
in1 = ffmpeg.input(output_video_path)
|
124 |
-
in2 = ffmpeg.input(video_path)
|
125 |
-
out = ffmpeg.output(in1.video, in2.audio, new_path,video_bitrate=self.ffmpeg_video_bitrate,vcodec=self.ffmpeg_video_encoder)
|
126 |
-
out.run(overwrite_output=True,quiet=True)
|
127 |
-
else:
|
128 |
-
new_path = output_video_path
|
129 |
-
print("The video doesn't have audio, so post-processing is not necessary")
|
130 |
-
|
131 |
-
print(f"The process has finished.\nThe refaced video can be found at {os.path.abspath(new_path)}")
|
132 |
-
return new_path
|
133 |
-
|
134 |
-
def __get_faces(self,frame,max_num=0):
|
135 |
-
|
136 |
-
bboxes, kpss = self.face_detector.detect(frame,max_num=max_num,metric='default')
|
137 |
-
|
138 |
-
if bboxes.shape[0] == 0:
|
139 |
-
return []
|
140 |
-
ret = []
|
141 |
-
for i in range(bboxes.shape[0]):
|
142 |
-
bbox = bboxes[i, 0:4]
|
143 |
-
det_score = bboxes[i, 4]
|
144 |
-
kps = None
|
145 |
-
if kpss is not None:
|
146 |
-
kps = kpss[i]
|
147 |
-
face = Face(bbox=bbox, kps=kps, det_score=det_score)
|
148 |
-
face.embedding = self.rec_app.get(frame, kps)
|
149 |
-
ret.append(face)
|
150 |
-
return ret
|
151 |
-
|
152 |
-
def process_first_face(self,frame):
|
153 |
-
faces = self.__get_faces(frame,max_num=1)
|
154 |
-
if len(faces) != 0:
|
155 |
-
frame = self.face_swapper.get(frame, faces[0], self.replacement_faces[0][1], paste_back=True)
|
156 |
-
return frame
|
157 |
-
|
158 |
-
def process_faces(self,frame):
|
159 |
-
faces = self.__get_faces(frame,max_num=0)
|
160 |
-
for rep_face in self.replacement_faces:
|
161 |
-
for i in range(len(faces) - 1, -1, -1):
|
162 |
-
sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
|
163 |
-
if sim>=rep_face[2]:
|
164 |
-
frame = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
|
165 |
-
del faces[i]
|
166 |
-
break
|
167 |
-
return frame
|
168 |
-
|
169 |
-
def __check_video_has_audio(self,video_path):
|
170 |
-
self.video_has_audio = False
|
171 |
-
probe = ffmpeg.probe(video_path)
|
172 |
-
audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
|
173 |
-
if audio_stream is not None:
|
174 |
-
self.video_has_audio = True
|
175 |
-
|
176 |
-
def reface_group(self, faces, frames, output):
|
177 |
-
with ThreadPoolExecutor(max_workers = self.use_num_cpus) as executor:
|
178 |
-
if self.first_face:
|
179 |
-
results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames),desc="Processing frames"))
|
180 |
-
else:
|
181 |
-
results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames),desc="Processing frames"))
|
182 |
-
for result in results:
|
183 |
-
output.write(result)
|
184 |
|
185 |
def reface(self, video_path, faces):
|
186 |
-
|
187 |
-
|
188 |
-
self.prepare_faces(faces)
|
189 |
|
190 |
cap = cv2.VideoCapture(video_path)
|
191 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
192 |
-
print(f"Total frames: {total_frames}")
|
193 |
-
|
194 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
195 |
-
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
196 |
-
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
197 |
-
|
198 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
frames.append(frame.copy())
|
208 |
-
pbar.update()
|
209 |
-
else:
|
210 |
-
break
|
211 |
-
if (len(frames) > 1000):
|
212 |
-
self.reface_group(faces,frames,output)
|
213 |
-
frames=[]
|
214 |
|
215 |
-
|
216 |
-
|
|
|
217 |
|
218 |
-
|
219 |
-
frames=[]
|
220 |
-
output.release()
|
221 |
-
|
222 |
-
return self.__convert_video(video_path,output_video_path)
|
223 |
-
|
224 |
-
def __try_ffmpeg_encoder(self, vcodec):
|
225 |
-
print(f"Trying FFMPEG {vcodec} encoder")
|
226 |
-
command = ['ffmpeg', '-y', '-f','lavfi','-i','testsrc=duration=1:size=1280x720:rate=30','-vcodec',vcodec,'testsrc.mp4']
|
227 |
-
try:
|
228 |
-
subprocess.run(command, check=True, capture_output=True).stderr
|
229 |
-
except subprocess.CalledProcessError as e:
|
230 |
-
print(f"FFMPEG {vcodec} encoder doesn't work -> Disabled.")
|
231 |
-
return False
|
232 |
-
print(f"FFMPEG {vcodec} encoder works")
|
233 |
-
return True
|
234 |
-
|
235 |
-
def __check_encoders(self):
|
236 |
-
self.ffmpeg_video_encoder='libx264'
|
237 |
-
self.ffmpeg_video_bitrate='0'
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
commandout = subprocess.run(command, check=True, capture_output=True).stdout
|
242 |
-
result = commandout.decode('utf-8').split('\n')
|
243 |
-
for r in result:
|
244 |
-
if "264" in r:
|
245 |
-
encoders = re.search(pattern, r).group(1).split(' ')
|
246 |
-
for v_c in Refacer.VIDEO_CODECS:
|
247 |
-
for v_k in encoders:
|
248 |
-
if v_c == v_k:
|
249 |
-
if self.__try_ffmpeg_encoder(v_k):
|
250 |
-
self.ffmpeg_video_encoder=v_k
|
251 |
-
self.ffmpeg_video_bitrate=Refacer.VIDEO_CODECS[v_k]
|
252 |
-
print(f"Video codec for FFMPEG: {self.ffmpeg_video_encoder}")
|
253 |
-
return
|
254 |
|
255 |
-
|
256 |
-
'h264_videotoolbox':'0', #osx HW acceleration
|
257 |
-
'h264_nvenc':'0', #NVIDIA HW acceleration
|
258 |
-
#'h264_qsv', #Intel HW acceleration
|
259 |
-
#'h264_vaapi', #Intel HW acceleration
|
260 |
-
#'h264_omx', #HW acceleration
|
261 |
-
'libx264':'0' #No HW acceleration
|
262 |
-
}
|
|
|
1 |
+
import os
|
2 |
import cv2
|
3 |
+
import numpy as np
|
|
|
4 |
from insightface.app import FaceAnalysis
|
5 |
+
from insightface.model_zoo import model_zoo
|
6 |
+
from onnxruntime import InferenceSession
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
class Refacer:
|
9 |
+
def __init__(self, force_cpu=False, colab_performance=False):
|
|
|
10 |
self.force_cpu = force_cpu
|
11 |
self.colab_performance = colab_performance
|
12 |
+
self.model = self.load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def load_model(self):
|
15 |
+
model_path = "/home/user/app/inswapper_128.onnx" # Replace with your actual model path
|
16 |
+
if not os.path.exists(model_path):
|
17 |
+
raise FileNotFoundError(f"Model not found at {model_path}")
|
18 |
+
return InferenceSession(model_path, providers=["CPUExecutionProvider" if self.force_cpu else "CUDAExecutionProvider"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def reface(self, video_path, faces):
|
21 |
+
if not os.path.exists(video_path):
|
22 |
+
raise FileNotFoundError(f"Video file not found at {video_path}")
|
|
|
23 |
|
24 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
26 |
+
output_path = "output_video.mp4"
|
27 |
+
out = cv2.VideoWriter(output_path, fourcc, cap.get(cv2.CAP_PROP_FPS),
|
28 |
+
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
29 |
+
|
30 |
+
while cap.isOpened():
|
31 |
+
ret, frame = cap.read()
|
32 |
+
if not ret:
|
33 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
for face in faces:
|
36 |
+
# Here, you should apply face-swapping logic using ONNX and the destination face
|
37 |
+
pass # Replace this with face-swapping code
|
38 |
|
39 |
+
out.write(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
cap.release()
|
42 |
+
out.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|